Skip to main content
Log in

Performance Analysis of a Segmented Annular Thermoelectric Generator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We analysed the steady state performance of a segmented annular thermoelectric generator (SATEG). The thermoelectric leg consists of high-, medium- and low-temperature thermoelectric materials joined in series and its cross-sectional area is asumed to be constant. The simplified solution of current in an SATEG and the optimized external resistance corresponding to maximum output power and maximum conversion efficiency are performed. This is more convenient for engineering application than the exact solution. Numerical results calculated based on the simplified solutions agree well with the exact solutions. It is found that the output power and conversion efficiency of an SATEG are not bounded by its segments and can be higher than those of each segment through the proper selection of material combination and segment’s length. A design guideline for segmented thermoelectric generators (STEGs) based on figure of merit of high-, medium- and low-temperature thermoelectric segments is proposed. This study will be helpful for the optimization design of STEG devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A 0 :

Cross-section area of thermoelectric leg, m2

H :

Height of thermoelectric segment, m

I :

Electrical current, A

K :

Overall thermal conductance, W/(mK)

P :

Output power, W

Q :

Rate of heat flow, W

r :

Radial direction, m

R :

Overall electrical resistance, Ω

T :

Temperature, K

V :

Voltage, V

ZT :

Figure of merit

R L :

External resistance, Ω

T m :

Temperature at the junction of the first and second segment, K

T l :

Temperature at the junction of the second and third segment, K

P* :

Power density, W/(cm2)

\( \alpha \) :

Seebeck coefficient, V/K

\( k \) :

Thermal conductivity, W/m

\( \sigma \) :

Electrical conductivity, S/m

θ :

Angle, rad

η :

Efficiency

δ :

Thickness of thermoelectric legs, m

n :

n-Type leg

p :

p-Type leg

h:

Heat source

c:

Heat sink

eff:

Effective property

i:

Thermocouple segment number

1:

First thermocouple segment

2:

Second thermocouple segment

3:

Third thermocouple segment

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).

    Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nature 7, 105 (2008).

    Article  CAS  Google Scholar 

  4. D. Narducci, Appl. Phys. Lett. 99, 102104 (2011).

    Article  Google Scholar 

  5. H. Wang, A. Jasim, and X.D. Chen, Appl. Energy 212, 1083 (2018).

    Article  Google Scholar 

  6. R. Quan, X. Tang, S. Quan, and L. Huang, J. Electron. Mater. 42, 1469 (2013).

    Article  CAS  Google Scholar 

  7. D.M. Rowe, Thermoelectrics Handbook Macro to Nano (Boca Raton: CRC Press, 2006).

    Google Scholar 

  8. H. Lee, Appl. Energy 106, 79 (2013).

    Article  Google Scholar 

  9. G.J. Snyder and T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003).

    Article  Google Scholar 

  10. L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Science 351, 141 (2016).

    Article  CAS  Google Scholar 

  11. J. He and T.M. Tritt, Science 357, eaak9997 (2017).

    Article  Google Scholar 

  12. J. Kim, Y.T. Kang, S.N. Kang, J.H. Hwang, S.G. Lee, H. Hong, and M.G. Kim, Int. J. Therm. Sci. 47, 486 (2008).

    Article  CAS  Google Scholar 

  13. G.J. Snyder, Appl. Phys. Lett. 84, 2436 (2004).

    Article  CAS  Google Scholar 

  14. G.B. Zhang, L.H. Fan, Z.Q. Niu, K. Jiao, H. Diao, Q. Du, and G.Q. Shu, Energy Convers. Manag. 106, 510 (2015).

    Article  Google Scholar 

  15. H.S. Kim, K. Kikuchi, T. Itoh, T. Iida, and M. Taya, Mater. Sci. Eng. B 185, 45 (2014).

    Article  CAS  Google Scholar 

  16. H. Ali, B.S. Yilbas, and A. Al-Sharafi, Int. J. Energy Res. 42, 477 (2018).

    Article  Google Scholar 

  17. G. Min and D.M. Rowe, Sci. Technol. 22, 880 (2007).

    CAS  Google Scholar 

  18. Z.G. Shen, S.Y. Wu, and L. Xiao, Energy Convers. Manag. 89, 244 (2015).

    Article  Google Scholar 

  19. A.B. Zhang, B.L. Wang, D.D. Pang, L.W. He, J. Lou, J. Wang, and J.K. Du, Energy 147, 612 (2018).

    Article  Google Scholar 

  20. S.C. Kaushik and S. Manikandan, Energy Convers. Manag. 103, 200 (2015).

    Article  Google Scholar 

  21. A. Bauknecht, T. Steinert, C. Spengler, and G. Suck, J. Electron. Mater. 42, 1641 (2013).

    Article  CAS  Google Scholar 

  22. A.B. Zhang, B.L. Wang, D.D. Pang, J.B. Chen, J. Wang, and J.K. Du, Energy Convers. Manag. 166, 337 (2018).

    Article  Google Scholar 

  23. Z.G. Shen, X. Liu, S. Chen, S.Y. Wu, L. Xiao, and Z.X. Chen, Energy 157, 297 (2018).

    Article  Google Scholar 

  24. S.F. Fan and Y.W. Gao, Energy 183, 35 (2019).

    Article  Google Scholar 

  25. S. Shittu, G.Q. Li, X.D. Zhao, X.L. Ma, Y.G. Akhlaghi, and E. Ayodele, Energy Convers. Manag. 184, 180 (2019).

    Article  CAS  Google Scholar 

  26. E.J. Sandoz-Rosado, S.J. Weinstein, and R.J. Stevens, Int. J. Therm. Sci. 66, 1 (2013).

    Article  Google Scholar 

  27. P.F. Qiu, R.H. Liu, J. Yang, X. Shi, X.Y. Huang, W. Zhang, L.D. Chen, J.H. Yang, and D.J. Singh, J. Appl. Phys. 111, 23705 (2012).

    Article  Google Scholar 

  28. J. Davidow and Y. Gelbstein, J. Electron. Mater. 42, 1542 (2013).

    Article  CAS  Google Scholar 

  29. F. Wu, W. Wang, X. Hu, and M. Tang, Prog. Nat. Sci. Mater. Int. 27, 203 (2017).

    Article  CAS  Google Scholar 

  30. A. Narjis, C.T. Liang, H. El Aakib, A. Tchenka, and A. Outzourhit, J. Electron. Mater. 49, 306 (2020).

    Article  CAS  Google Scholar 

  31. Y.R. Koh, K. Yazawa, A. Shakouri, T. Nagahama, S. Maeda, T. Isaji, and Y. Kasai, J. Electron. Mater. 48, 7312 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for their comments on the original manuscript, which are especially useful for improving the presentation and quality of the final paper. The research was supported by the Ningbo Natural Science Foundation (2019A610151), the Natural Science Foundation of Zhejiang Province of China (LY17A020001), the National Natural Science Foundation of China (NSFC) (Project No. 11402063), and the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z.F., Sun, Y., Zhang, A.B. et al. Performance Analysis of a Segmented Annular Thermoelectric Generator. J. Electron. Mater. 49, 4830–4842 (2020). https://doi.org/10.1007/s11664-020-08208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08208-5

Keywords

Navigation