Skip to main content
Log in

Synthesis of Hydrogen-Containing Methyl Phenyl Silicone Resins with a High Refractive Index for LED Encapsulation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Addition-curing is the most common method for preparing high-performance silicone materials for light-emitting diode (LED) encapsulation. The structure and the hydrogen content of the hydrogen-containing cross-linking agents used in addition reactions have a significant influence on the performance of the cured products. In this study, a series of hydrogen-containing methyl phenyl silicone resins with different hydrogen content were synthesized through hydrolysis condensation. Subsequently, the high-refractive-index hydrogen-containing silicone resins reacted with vinyl methyl phenyl silicone resins to obtain methyl phenyl silicone materials. The cured products showed high light transmittance (> 89% at 450 nm), appropriate hardness and good thermal stability. The tests of reflow soldering (265°C ± 5°C for 10 cycles) and lumen depreciation (50 mA for 165 h) further demonstrated that the prepared silicone materials possessed high thermal resistance and stability. In addition, increasing the hydrogen content enhanced the cross-link density, thereby improving the thermal stability of the silicone materials. The prepared hydrogen-containing methyl phenyl silicone resins can thus serve as a cross-linker for addition-curing in high-power LED encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.I. Made, Y. Gao, G.J. Syaranamual, W.A. Sasangka, L. Zhang, X.S. Nguyen, Y.Y. Tay, J.S. Herrin, C.V. Thompson, and C.L. Gan, Microelectron. Reliab. 76–77, 561 (2017).

    Article  Google Scholar 

  2. T. Cheng, X. Luo, S. Huang, and S. Liu, Int. J. Therm. Sci. 49, 196 (2010).

    Article  Google Scholar 

  3. X. Luo, R. Hu, S. Liu, and K. Wang, Prog. Energy Combust. Sci. 56, 1 (2016).

    Article  Google Scholar 

  4. K.A. Bulashevich, M.S. Ramm, and S.Y. Karpov, Phys. Status Solidi 6, S804 (2009).

    Google Scholar 

  5. Z. Liu, S. Liu, K. Wang, and X. Luo, Front. Optoelectron. 2, 119 (2009).

    Article  Google Scholar 

  6. W.F. Schroeder, E.I. dell Erba, and G.F. Arenas, Polym. Adv. Technol. 24, 430 (2013).

    Article  CAS  Google Scholar 

  7. S.C. Yang, S.Y. Kwak, J.H. Jin, J.S. Kim, Y. Choi, K.W. Paik, and B.S. Bae, J. Mater. Chem. 22, 8874 (2012).

    Article  CAS  Google Scholar 

  8. T. Li, J. Zhang, H. Wang, Z. Hu, Y. Yu, and A.C.S. Appl, Mater. Interfaces 5, 8968 (2013).

    Article  CAS  Google Scholar 

  9. Y.T. Lin, Y.H. Li, I.A. Lei, C.Y. Kuo, C.F. Lee, and W.Y. Chiu, Mater. Chem. Phys. 206, 136 (2018).

    Article  CAS  Google Scholar 

  10. I.A. Lei, D.F. Lai, T.M. Don, W.C. Chen, Y.Y. Yu, and W.Y. Chiu, Mater. Chem. Phys. 144, 41 (2014).

    Article  CAS  Google Scholar 

  11. Z. Jiang, J. Zhang, and S. Feng, J. Appl. Polym. Sci. 104, 4144 (2007).

    Article  CAS  Google Scholar 

  12. J. Chen, Z. Fu, X. Zeng, H. Huang, and Z. Chen, RSC Adv. 6, 71924 (2016).

    Article  CAS  Google Scholar 

  13. X. Li, Y. Feng, X. Tan, Y. Han, and X. Sun, J. Macromol. Sci. Part A Pure Appl. Chem. 54, 690 (2017).

    Article  CAS  Google Scholar 

  14. D.D. Li, S. Li, S. Zhang, X.W. Liu, and C.P. Wong, IEEE Trans. Compon. Packag. Manuf. Technol. 4, 190 (2014).

    Article  CAS  Google Scholar 

  15. J.S. Kim, S.C. Yang, S.Y. Kwak, Y. Choi, K.W. Paik, and B.S. Bae, J. Mater. Chem. 22, 7954 (2012).

    Article  CAS  Google Scholar 

  16. S. Zhao and S. Feng, J. Appl. Polym. Sci. 88, 3066 (2003).

    Article  CAS  Google Scholar 

  17. S. Watzke and P. Altieri-Weimar, Microelectron. Reliab. 55, 733 (2015).

    Article  CAS  Google Scholar 

  18. Z. Pan, S. Zhu, B. Huang, and L. Zhu, J. Electron. Mater. 48, 2865 (2019).

    Article  CAS  Google Scholar 

  19. P. Singh and C.M. Tan, Opt. Mater. 86, 148 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqun Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Zeng, K., Huang, B. et al. Synthesis of Hydrogen-Containing Methyl Phenyl Silicone Resins with a High Refractive Index for LED Encapsulation. J. Electron. Mater. 49, 4816–4821 (2020). https://doi.org/10.1007/s11664-020-08199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08199-3

Keywords

Navigation