Skip to main content
Log in

Up-conversion Luminescence and Temperature Sensing Properties of CaBi4Ti4O15:Tm3+, Yb3+ Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tm3+/Yb3+ co-doped CaBi4Ti4O15 (CBT) bismuth layer structured ferroelectric ceramics were synthesized by a solid state reaction method and their microstructural and up-conversion (UC) luminescence properties were studied. Under 980-nm laser excitation, a strong blue light (475 nm) and a weaker red (650 nm) UC emission band were obtained, in which a three-photon UC mechanism is dominant, contributing to the transitions of 1G4 → 3H6, and 1G4 → 3F4. The optimal UC emission intensity was observed in the CBT: 0.005Tm3+/0.04Yb3+ samples. The transition 1G4 → (3H6, 3F4) of Tm3+ indicated a temperature-dependent behavior in the 163–503 K range. The maximum sensitivity was found to be 0.016 K−1 at 503 K based on the blue and red emissions. This indicates that CBT: 0.005Tm3+/0.04Yb3+ ferroelectric ceramics have great potential for applications in optical temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Zhao, X. Wang, Y. Zhang, Y. Li, and X. Yao, J. Alloys Compd. 770, 152691 (2020).

    Article  Google Scholar 

  2. J.C. Boyer, F. Vetrone, J. Capobianco, A. Speghini, and M. Bettinelli, Chem. Phys. Lett. 390, 403 (2004).

    Article  CAS  Google Scholar 

  3. J. Ikuta, K. Maeda, T. Sakai, T. Ikari, K. Koughia, M. Munzar, and S.O. Kasap, J. Mater. Sci. Mater. Electron. 18, S231 (2007).

    Article  CAS  Google Scholar 

  4. D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, and T. Sun, J. Appl. Phys. 111, 104111 (2012).

    Article  Google Scholar 

  5. H. Zou, Y. Hu, X. Zhu, D. Peng, X. Chai, X. Wang, B. Liu, and D. Shen, J. Mater. Sci. Mater. Electron. 28, 11921 (2017).

    Article  CAS  Google Scholar 

  6. D.C. Nguyen, G.E. Faulkner, and M. Dulick, Appl. Opt. 28, 3553 (1989).

    Article  CAS  Google Scholar 

  7. Y. Miao, P. Wang, H. Guan, and Y. Chen, J. Mater. Sci. Mater. Electron. 26, 5748 (2015).

    Article  CAS  Google Scholar 

  8. G. Ding, F. Gao, G. Wu, and D. Bao, J. Appl. Phys. 109, 123101 (2011).

    Article  Google Scholar 

  9. Y. Gu, Y. Li, F. Zheng, and X. Wang, J. Mater. Sci. Mater. Electron. 28, 501 (2017).

    Article  CAS  Google Scholar 

  10. X. Gong, Y. Li, Y. Zhang, and X. Wang, J. Mater. Sci. Mater. Electron. 29, 13286 (2018).

    Article  CAS  Google Scholar 

  11. H. Zou, X. Yang, B. Chen, Y. Du, B. Ren, X. Sun, X. Wang, Q. Zhang, and F. Wang, Angew. Chem. Int. Ed. 58, 17255 (2019).

    Article  CAS  Google Scholar 

  12. H.K. Yang, J.H. Oh, B.K. Moon, J.H. Jeong, and S.S. Yi, J. Ceram. Int. 40, 13357 (2014).

    Article  CAS  Google Scholar 

  13. L. Xing, Y. Xu, R. Wang, W. Xu, S. Gu, and X. Wu, J. Chem. Phys. Lett. 577, 53 (2013).

    Article  CAS  Google Scholar 

  14. W. Xu, J. Chen, P. Wang, Z. Zhang, and W. Cao, Opt. Lett. 37, 205 (2012).

    Article  CAS  Google Scholar 

  15. A. Rosas Camacho, F. de Carrillo Romo, A. García Murillo, J. Oliva, and C.R. Garcia, Mater. Lett. 226, 34 (2018).

    Article  CAS  Google Scholar 

  16. Y. Huang and L. Luo, J. Alloys Compd. 706, 312 (2017).

    Article  CAS  Google Scholar 

  17. C. Diao, J. Xu, H. Zheng, L. Fang, Y. Gu, and W. Zhang, Ceram. Int. 39, 6991 (2013).

    Article  CAS  Google Scholar 

  18. V.B. Santos, J.C. M’ Peko, M. Mir, V.R. Mastelaro, and A.C. Hemandes, J. Eur. Ceram. Soc. 29, 751 (2009).

    Article  CAS  Google Scholar 

  19. Q. Cao Deng, P.H. Zou, J. Li, X. Wang, and X. Yao, J. Adv. Dielectr. 4, 450018 (2014).

    Google Scholar 

  20. S.A. Song, D.S. Kim, H.M. Jeong, and K.S. Lim, J. Lumin. 152, 75 (2014).

    Article  CAS  Google Scholar 

  21. W.T. Carnall, G.L. Goodman, K. Rajnak, and R.S. Rana, J. Chem. Phys. 90, 3443 (1989).

    Article  CAS  Google Scholar 

  22. Q. Han, H. Hao, J. Yang, Z. Sun, J. Sun, and Y. Song, J. Alloys Compd. 786, 770 (2019).

    Article  CAS  Google Scholar 

  23. B. Dong, R.N. Hua, and B.S. Cao, et al., Phys. Chem. Chem. Phys. 16, 20009 (2014).

    Article  CAS  Google Scholar 

  24. P. Du, L. Luo, Q. Yue, and W. Li, Mater. Lett. 143, 209 (2015).

    Article  CAS  Google Scholar 

  25. S. Zheng, W. Chen, D. Tan, J. Zhou, Q. Guo, W. Jiang, C. Xu, X. Liu, and J. Qiu, Nanoscale 6, 5675 (2014).

    Article  CAS  Google Scholar 

  26. K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, Optic. Express. 23, 7653 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51572195)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xusheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Wang, X., Ye, H. et al. Up-conversion Luminescence and Temperature Sensing Properties of CaBi4Ti4O15:Tm3+, Yb3+ Ceramics. J. Electron. Mater. 49, 5047–5052 (2020). https://doi.org/10.1007/s11664-020-08239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08239-y

Keywords

Navigation