Skip to main content
Log in

Wave Breaking Phenomena for the Fornberg–Whitham Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to studying wave breaking phenomena for the Fornberg–Whitham equation. Making use of the structure and the conservation quantity of the Fornberg–Whitham equation, we give a sufficient condition on the initial data to ensure wave breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 299(1456), 6–25 (1967)

    MATH  Google Scholar 

  2. Fornberg, B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 289(1361), 373–404 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Naumkin, P.I., Shishmarev, I.A.: Nonlinear Nonlocal Equations in the Theory of Waves. Americn Mathematical Society, Providence (1994)

    Book  Google Scholar 

  4. Holmes, J.M.: Well-posedness of the Fornberg–Whitham equation on the circle. J. Differ. Equ. 260(12), 8530–8549 (2016)

    Article  MathSciNet  Google Scholar 

  5. Holmes, J., Thompson, R.C.: Well-posedness and continuity properties of the Fornberg–Whitham equation in Besov spaces. J. Differ. Equ. 263(7), 4355–4381 (2017)

    Article  MathSciNet  Google Scholar 

  6. Haziot, S.V.: Wave breaking for the Fornberg–Whitham equation. J. Differ. Equ. 263(12), 8178–8185 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hörmann, G.: Wave breaking of periodic solutions to the Fornberg–Whitham equation. Discrete Contin. Dyn. Syst. 38(3), 1605–1613 (2018)

    Article  MathSciNet  Google Scholar 

  8. Wei, L.: Wave breaking analysis for the Fornberg–Whitham equation. J. Differ. Equ. 265(7), 2886–2896 (2018)

    Article  MathSciNet  Google Scholar 

  9. Wu, X., Zhang, Z.: On the blow-up of solutions for the Fornberg–Whitham equation. Nonlinear Anal. Real World Appl. 44, 573–588 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hörmann, G.: Discontinuous traveling waves as weak solutions to the Fornberg–Whitham equation. J. Differ. Equ. 265(7), 2825–2841 (2018)

    Article  MathSciNet  Google Scholar 

  11. Korteweg, D.J., Vries, D.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  12. Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  13. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    Article  MathSciNet  Google Scholar 

  14. Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  15. Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod. Acta Mechanica 127(1–4), 193–207 (1998)

    Article  MathSciNet  Google Scholar 

  16. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäklund transformations and hereditary symmetries. Physica D Nonlinear Phenom. 4(1), 47–66 (1981)

    Article  Google Scholar 

  17. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 457(2008), 953–970 (2001)

    Article  MathSciNet  Google Scholar 

  18. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181(2), 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  19. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 26(2), 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Annales de l’institut Fourier 50(2), 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  21. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Mathematische Z. 233(1), 75–91 (2000)

    Article  MathSciNet  Google Scholar 

  22. Constantin, A.: The trajectories of particles in Stokes waves. Inventiones Mathematicae 166(3), 523–535 (2006)

    Article  MathSciNet  Google Scholar 

  23. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44(3), 423–431 (2007)

    Article  MathSciNet  Google Scholar 

  24. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173(1), 559–568 (2011)

    Article  MathSciNet  Google Scholar 

  25. Degasperis, A., Procesi, M.: Asymptotic Integrability. Symmetry and Perturbation Theory, pp. 23–37. World Science, Singapore (1999)

    MATH  Google Scholar 

  26. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133(2), 1463–1474 (2002)

    Article  MathSciNet  Google Scholar 

  27. Liu, Y., Yin, Z.: Global existence and blow-up phenomena for the Degasperis–Procesi equation. Commun. Math. Phys. 267(3), 801–820 (2006)

    Article  MathSciNet  Google Scholar 

  28. Escher, J., Liu, Y., Yin, Z.: Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation. Indiana Univ. Math. J. 56, 87–117 (2007)

    Article  MathSciNet  Google Scholar 

  29. Liu, Y., Yin, Z.: On the blow-up phenomena for the Degasperis–Procesi equation. Int. Math. Res. Not. 2007(9), 1–22 (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojie Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S. Wave Breaking Phenomena for the Fornberg–Whitham Equation. J Dyn Diff Equat 33, 1753–1758 (2021). https://doi.org/10.1007/s10884-020-09866-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09866-z

Keywords

Navigation