Skip to main content
Log in

Optogenetic activation of corticogeniculate feedback stabilizes response gain and increases information coding in LGN neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In spite of their anatomical robustness, it has been difficult to establish the functional role of corticogeniculate circuits connecting primary visual cortex with the lateral geniculate nucleus of the thalamus (LGN) in the feedback direction. Growing evidence suggests that corticogeniculate feedback does not directly shape the spatial receptive field properties of LGN neurons, but rather regulates the timing and precision of LGN responses and the information coding capacity of LGN neurons. We propose that corticogeniculate feedback specifically stabilizes the response gain of LGN neurons, thereby increasing their information coding capacity. Inspired by early work by McClurkin et al. (1994), we manipulated the activity of corticogeniculate neurons to test this hypothesis. We used optogenetic methods to selectively and reversibly enhance the activity of corticogeniculate neurons in anesthetized ferrets while recording responses of LGN neurons to drifting gratings and white noise stimuli. We found that optogenetic activation of corticogeniculate feedback systematically reduced LGN gain variability and increased information coding capacity among LGN neurons. Optogenetic activation of corticogeniculate neurons generated similar increases in information encoded in LGN responses to drifting gratings and white noise stimuli. Together, these findings suggest that the influence of corticogeniculate feedback on LGN response precision and information coding capacity could be mediated through reductions in gain variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acker, L., Pino, E. N., & Desimone, R. (2016). FEF inactivation with improved optogenetic methods. Procedings of the National Academy of Science USA, 113, E7297–E7306.

    Article  CAS  Google Scholar 

  • Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. PNAS, 104(5), 1685–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7(3), 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, M. R., & Maunsell, J. H. (2009). Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience, 12(12), 1594–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denman, D. J., & Contreras, D. (2015). Complex effects on in vivo visual responses by specific projections from mouse cortical layer 6 to dorsal lateral geniculate nucleus. Journal of Neuroscience, 35(25), 9265–9280.

    Article  CAS  PubMed  Google Scholar 

  • Derrington, A. M., & Fuchs, A. F. (1979). Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus. Journal of Physiology, 293, 347–364.

    Article  CAS  Google Scholar 

  • Erisir, A., Van Horn, S. C., Bickford, M. E., & Sherman, S. M. (1997a). Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminals. The Journal of Comparative Neurology, 377, 535–549.

    Article  CAS  PubMed  Google Scholar 

  • Erisir, A., Van Horn, S. C., & Sherman, S. M. (1997b). Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. PNAS, 94, 1517–1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funke, K., Nelle, E., Li, B., & Worgotter, F. (1996). Corticofugal feedback improves the timing of retino-geniculate signal transmission. NeuroReports, 7(13), 2130–2134.

    Article  CAS  Google Scholar 

  • Geisert, E. E., Langsetmo, A., & Spear, P. D. (1981). Influence of the cortico-geniculate pathway on response properties of cat lateral geniulate nucleus. Brain Research, 208, 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Goris, R. L. T., Movshon, J. A., & Simoncelli, E. P. (2014). Partitioning neuronal variability. Nature Neuroscience, 17(6), 858–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goris, R. L. T., Ziemba, C. M., Movshon, J. A., & Simoncelli, E. P. (2018). Slow gain fluctuations limit benefits of temporal integration in visual cortex. Journal of Vision, 18(8), 1–13.

    Article  Google Scholar 

  • Gu, Y., Fetsch, C. R., Adeyemo, B., DeAngelis, G. C., & Angelaki, D. E. (2010). Decoding of MSTd population activity accounts for variations in the precision of heading perception. Neuron, 66, 596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyas, B., Lagae, L., Eysel, U. T., & Orban, G. A. (1990). Corticofugal feedback influences the responses of geniculate neurons to moving stimuli. Experimental Brain Research, 79(2), 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Hartveit, E., & Heggelund, P. (1994). Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. Journal of Neurophysiology, 72, 1278–1289.

    Article  CAS  PubMed  Google Scholar 

  • Hasse, J. M., Bragg, E. M., Murphy, A. J., & Briggs, F. (2019). Morphological heterogeneity among corticogeniculate neurons in ferrets: Quantification and comparison with a previous report in macaque monkeys. Journal of Comparative Neurology, 527, 546–557.

    Article  Google Scholar 

  • Hasse, J. M., & Briggs, F. (2017). Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret. Procedings of the National Academy of Science USA, 114(30), E6222–E6230.

    Article  CAS  Google Scholar 

  • Henaff, O. J., Boundy-Singer, Z. M., Meding, K., Ziemba, C. M., & Goris, R. L. T. (2020). Representation of visual uncertainty through neural gain variability. Nature Communications, 11(2513), 1–12.

    Google Scholar 

  • Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27, 635–646.

    Article  CAS  PubMed  Google Scholar 

  • Kumbhani, R. D., Nolt, M. J., & Palmer, L. A. (2007). Precision, reliability, and information-theoretic analysis of visual thalamocortical neurons. Journal of Neurophysiology, 98, 2647–2663.

    Article  PubMed  Google Scholar 

  • Levine, M. W., Cleland, B. G., Mukherjee, P., & Kaplan, E. (1996). Tailoring of variability in the lateral geniculate nucleus of the cat. Biological Cybernetics, 75, 219–227.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Ye, X., Song, T., Yang, Y., & Zhou, Y. (2011). Contrast adaptation in cat lateral geniculate nucleus and influence of corticothalamic feedback. European Journal of Neuroscience, 34, 622–631.

    Article  Google Scholar 

  • Ling, S., Pratte, M., & Tong, F. (2015). Attention alters orientation processing in the human lateral geniculate nucleus. Nature Neuroscience, 18(4), 496–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R. C., Tzonev, S., Rebrik, S., & Miller, K. D. (2001). Variability and information in a neural code of the cat lateral geniculate nucleus. Journal of Neurophysiology, 86, 2789–2806.

    Article  CAS  PubMed  Google Scholar 

  • Marrocco, R. T., McClurkin, J. W., & Alkire, M. T. (1996). The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells. Brain Research, 737(1–2), 110–118.

    Article  CAS  PubMed  Google Scholar 

  • Maunsell, J. H. R., & Cook, E. P. (2002). The role of attention in visual processing. Phil. Trans. Royal Society London, 357, 1063–1072.

    Article  Google Scholar 

  • McAlonan, K., Cavanaugh, J. R., & Wurtz, R. H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature, 456, 391–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClurkin, J. W., Gawne, T. J., Optican, L. M., & Richmond, B. J. (1991). Lateral geniculate neurons in behaving primates. II. Encoding of visual information in the temporal shape of the response. J. Neurophysiology, 66(3), 794–808.

    Article  CAS  Google Scholar 

  • McClurkin, J. W., Optican, L. M., & Richmond, B. J. (1994). Cortical feedback increases visual information transmitted by monkey parvlcellular lateral geniculate nucleus neurons. Visual Neuroscience, 11(3), 601–617.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, J. F., Sundberg, K. A., & Reynolds, J. H. (2009). Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron, 63, 879–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mock, V. L., Luke, K. L., Hembrook-Short, J. R., & Briggs, F. (2018). Dynamic communication of attention signals between the LGN and V1. Journal of Neurophysiology, 120(4), 1625–1639.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nover, H., Anderson, C. H., & DeAngelis, G. C. (2005). A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination performance. The Journal of Neuroscience, 25(43), 10049–10060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience, 5(11), 1203–1209.

    Article  CAS  PubMed  Google Scholar 

  • Pouget, A., Zhang, K., Deneve, S., & Latham, P. E. (1998). Sstatistically efficient estimation using population coding. Neural Computation, 10, 373–401.

    Article  CAS  PubMed  Google Scholar 

  • Pryluk, R., Kfir, Y., Gelbard-Sagiv, H., Fried, I., & Paz, R. (2019). A tradeoff in the neural code across regions and species. Cell, 176, 597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przybyszewski, A. W., Gaska, J. P., Foote, W., & Pollen, D. A. (2000). Striate cortex increases contrast gain of macaque LGN neurons. Visual Neuroscience, 17, 485–494.

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz, N. C., Goris, R. L. T., Cohen, M. R., & Simoncelli, E. P. (2015). Attention stabilizes the shared gain of V4 populations. eLife, 4, 1–24, doi:https://doi.org/10.7554/eLife.08998.

  • Rathbun, D. L., Warland, D. K., & Usrey, W. M. (2010). Spike timing and information transmission at retinogeniculate synapses. Journal of Neuroscience, 30(41), 13558–13566.

    Article  CAS  PubMed  Google Scholar 

  • Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. The Journal of Neuroscience, 20(14), 5392–5400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seung, H. S., & Sompolinsky, H. (1993). Simple models for reading neuronal population codes. Procedings of the National Academy of Science USA, 90, 10749–10753.

    Article  CAS  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: Distinguishing "drivers" from "modulators". PNAS, 95, 7121–7126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (2006). Exploring the thalamus and its role in cortical function (2nd ed.). Boston: MIT Press.

    Google Scholar 

  • Sherman, S. M., & Spear, P. D. (1982). Organization of visual pathways in normal and visually deprived cats. Physiological Reviews, 62(2), 738–850.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M. (2003). The corticothalamic system in sleep. Frontiers in Bioscience, 8, d878–d899.

    Article  CAS  PubMed  Google Scholar 

  • Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., & Bialek, W. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80(1), 197–200.

    Article  CAS  Google Scholar 

  • Tsumoto, T., Creutzfeldt, O. D., & Legendy, C. R. (1978). Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat. Experimental Brain Research, 32, 345–364.

    Article  CAS  PubMed  Google Scholar 

  • Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retiongeniculate connections. Journal of Neurophysiology, 82, 3527–3540.

    Article  CAS  PubMed  Google Scholar 

  • Vanduffel, W., Tootell, R. B. H., & Orban, G. (2000). Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. Cerebral Cortex, 10, 109–126.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brianna Carr, Marc Mancarella, and Elise Bragg for expert technical assistance and Drs. Dana LeMoine, Wendy Bates, Diane Moorman-White, Jeff Wyatt, Karen Moodie, and Kirk Maurer for veterinary assistance. We thank Dr. Daniel Rathbun, Uday Chockanathan, and Dr. Krishnan Padmanabhan for helpful discussions of data analysis methods and comments on this manuscript.

Funding

This work was funded by the National Institutes of Health (National Eye Institute: EY018683 and EY025219 to F.B. and T32EY007125 to A.J.M.) and the Whitehall Foundation (2013-05-06). J.M.H. was supported by a Graduate Fellowship from the Albert J. Ryan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.J.M, R.L.T.G., and F.B. designed the experiments. A.J.M. and J.M.H. collected the data. A.J.M., L.S., and F.B. analyzed the data. A.J.M., R.L.T.G., and F.B. wrote the manuscript.

Corresponding author

Correspondence to Farran Briggs.

Ethics declarations

Conflicts of interest/competing interests

All of the authors declare no financial conflicts of interest or competing interests related to this study.

Availability of data and material

Data generated for this study will be made available upon reasonable written request to the corresponding author.

Code availability

Variance code is available here: https://gorislab.github.io/resources/ Information theory analysis code is available here: https://github.com/BriggsNeuro/InfoVarianceCode​.

Additional information

Action Editor: Aasef G. Shaikh

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Vision and Action

Guest Editors: Aasef Shaikh and Jeffrey Shall

This article belongs to the Topical Collection: Vision and Action Guest Editors: Aasef Shaikh and Jeffrey Shall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, A.J., Shaw, L., Hasse, J.M. et al. Optogenetic activation of corticogeniculate feedback stabilizes response gain and increases information coding in LGN neurons. J Comput Neurosci 49, 259–271 (2021). https://doi.org/10.1007/s10827-020-00754-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-020-00754-5

Keywords

Navigation