Skip to main content

Advertisement

Log in

A role for mast cells and mast cell tryptase in driving neutrophil recruitment in LPS-induced lung inflammation via protease-activated receptor 2 in mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

A Correction to this article was published on 07 August 2020

This article has been updated

Abstract

Objective

This study aims to investigate the role of protease-activated receptor (PAR) 2 and mast cell (MC) tryptase in LPS-induced lung inflammation and neutrophil recruitment in the lungs of C57BL/6 mice.

Methods

C57BL/6 mice were pretreated with the PAR2 antagonist ENMD-1068, compound 48/80 or aprotinin prior to intranasal instillation of MC tryptase or LPS. Blood leukocytes, C-X-C motif chemokine ligand (CXCL) 1 production leukocytes recovered from bronchoalveolar lavage fluid (BALF), and histopathological analysis of the lung were evaluated 4 h later. Furthermore, we performed experiments to determine intracellular calcium signaling in RAW 264.7 cells stimulated with LPS in the presence or absence of a protease inhibitor cocktail or ENMD-1068 and evaluated PAR2 expression in the lungs of LPS-treated mice.

Results

Pharmacological blockade of PAR2 or inhibition of proteases reduced neutrophils recovered in BALF and LPS-induced calcium signaling. PAR2 blockade impaired LPS-induced lung inflammation, PAR2 expression in the lung and CXCL1 release in BALF, and increased circulating blood neutrophils. Intranasal instillation of MC tryptase increased the number of neutrophils recovered in BALF, and MC depletion with compound 48/80 impaired LPS-induced neutrophil migration.

Conclusion

Our study provides, for the first time, evidence of a pivotal role for MCs and MC tryptase in neutrophil migration, lung inflammation and macrophage activation triggered by LPS, by a mechanism dependent on PAR2 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 07 August 2020

    The original article can be found online.

References

  1. Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res. 2019;68:59–74.

    CAS  PubMed  Google Scholar 

  2. Petri B, Sanz MJ. Neutrophil chemotaxis. Cell Tissue Res. 2018;371:425–36.

    CAS  PubMed  Google Scholar 

  3. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89.

    CAS  PubMed  Google Scholar 

  4. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989;320:365–76.

    CAS  PubMed  Google Scholar 

  5. Hollenberg MD, Compton SJ. International union of pharmacology. XXVIII proteinase-activated receptors. Pharmacol. Rev. 2002;54:203–17.

    CAS  PubMed  Google Scholar 

  6. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68.

    CAS  PubMed  Google Scholar 

  7. Rallabhandi P, Nhu QM, Toshchakov VY, Piao W, Medvedev AE, Hollenberg MD, et al. Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. J Biol Chem. 2008;283:24314–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cicala C. Protease activated receptor 2 and the cardiovascular system. Br J Pharmacol. 2002;135:14–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawabata A, Kuroda R, Minami T, Kataoka K, Taneda M. Increased vascular permeability by a specific agonist of protease-activated receptor-2 in rat hindpaw. Br J Pharmacol. 1998;125:419–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vergnolle N. Review article: proteinase-activated receptors—novel signals for gastrointestinal pathophysiology. Aliment PharmacolTher. 2000;14:257–66.

    CAS  Google Scholar 

  11. Cocks TM, Moffatt JD. Protease-activated receptor-2 (PAR2) in the airways. Pulm Pharmacol Ther. 2001;14:183–91.

    CAS  PubMed  Google Scholar 

  12. Agier J, Pastwińska J, Brzezińska-Błaszczyk E. An overview of mast cell pattern recognition receptors. Inflamm Res. 2018;67:737–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. González-de-Olano D, Álvarez-Twose I. Mast cells as key players in allergy and inflammation. J Investig Allergol Clin Immunol. 2018;28:365–78.

    PubMed  Google Scholar 

  14. Agier J, Żelechowska P, Kozłowska E, Brzezińska-Błaszczyk E. Expression of surface and intracellular Toll-like receptors by mature mast cells. Cent Eur J Immunol. 2016;41:333–8.

    CAS  PubMed  Google Scholar 

  15. Di Nardo A, Vitiello A, Gallo RL. Mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol. 2003;170:2274–8.

    PubMed  Google Scholar 

  16. Di Nardo A, Yamasaki K, Dorschner RA, Lai Y, Gallo RL. Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J Immunol. 2008;180:7565–73.

    PubMed  PubMed Central  Google Scholar 

  17. Shpacovitch VM, Seeliger S, Huber-Lang M, Balkow S, Feld M, Hollenberg MD, et al. Agonists of proteinase-activated receptor-2 affect transendothelial migration and apoptosis of human neutrophils. Exp Dermatol. 2007;16:799–806.

    CAS  PubMed  Google Scholar 

  18. Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol. 2012;34:133–49.

    CAS  PubMed  Google Scholar 

  19. Van den Boogaard FE, Brands X, Duitman J, de Stoppelaar SF, Borensztajn KS, Roelofs JJTH, et al. Protease-activated receptor 2 facilitates bacterial dissemination in pneumococcal pneumonia. J Infect Dis. 2018;217:1462–71.

    CAS  PubMed  Google Scholar 

  20. Howells GL, Macey MG, Chinni C, Hou L, Fox MT, Harriott P, et al. Proteinase-activated receptor-2: expression by human neutrophils. J Cell Sci. 1997;110:881–7.

    CAS  PubMed  Google Scholar 

  21. Roche N, Stirling RG, Lim S, Oliver BG, Oates T, Jazrawi E, et al. Effect of acute and chronic inflammatory stimuli on expression of protease-activated receptors 1 and 2 in alveolar macrophages. J Allergy Clin Immunol. 2003;111:367–73.

    CAS  PubMed  Google Scholar 

  22. Shpacovitch VM, Feld M, Holzinger D, Kido M, Hollenberg MD, Levi-Schaffer F, et al. Role of proteinase-activated receptor-2 in anti-bacterial and immunomodulatory effects of interferon-γ on human neutrophils and monocytes. Immunology. 2011;133:329–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Klein A, Talvani A, Silva PM, Martins MA, Wells TN, Proudfoot A, et al. Stem cell factor-induced leukotriene B4 production cooperates with eotaxin to mediate the recruitment of eosinophils during allergic pleurisy in mice. J Immunol. 2001;167:524–31.

    CAS  PubMed  Google Scholar 

  24. Horvat JC, Beagley KW, Wade MA, Preston JA, Hansbro NG, Hickey DK, et al. Neonatal chlamydial infection induces mixed T-cell responses that drive allergic airway disease. Am J Respir Crit Care Med. 2007;176:556–64.

    PubMed  Google Scholar 

  25. Garcia CC, Russo RC, Guabiraba R, Fagundes CT, Polidoro RB, Tavares LP, et al. Platelet-activating factor receptor plays a role in lung injury and death caused by influenza A in mice. PLoS Pathog. 2010;6:e1001171.

    PubMed  PubMed Central  Google Scholar 

  26. Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010;1:87–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Su YC, Wu WM, Wu MF, Chiang BL. A model of chronic lymphocytic leukemia with Ritcher’s transformation in severe combined immunodeficiency mice. Exp Hematol. 2001;29:1218–25.

    CAS  PubMed  Google Scholar 

  28. Schlosser SF, Burgstahler AD, Nathanson MH. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci USA. 1996;93:9948–53.

    CAS  PubMed  Google Scholar 

  29. Leite MF, Thrower EC, Echevarria W, Koulen P, Hirata K, Bennett AM, et al. Nuclear and cytosolic calcium are regulated independently. Proc Natl Acad Sci USA. 2003;100:2975–80.

    CAS  PubMed  Google Scholar 

  30. Di Rosa M, Giroud JP, Willoughby DA. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol. 1971;104:15–29.

    PubMed  Google Scholar 

  31. Ramos CD, Heluy-Neto NE, Ribeiro RA, Ferreira SH, Cunha FQ. Neutrophil migration induced by IL-8-activated mast cells is mediated by CINC-1. Cytokine. 2003;21:214–23.

    CAS  PubMed  Google Scholar 

  32. Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, et al. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol. 2002;169:5315–21.

    PubMed  Google Scholar 

  33. Davidson CE, Asaduzzaman M, Arizmendi NG, Polley D, Wu Y, Gordon JR, et al. Proteinase-activated receptor-2 activation participates in allergic sensitization to house dust mite allergens in a murine model. Clin Exp Allergy. 2013;43:1274–85.

    CAS  PubMed  Google Scholar 

  34. de Boer JD, Van'tVeer C, Stroo I, van der Meer AJ, de Vos AF, van der Zee JS, et al. Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation. Innate Immun. 2014;20:618–25.

    PubMed  Google Scholar 

  35. Asaduzzaman M, Nadeem A, Arizmendi N, Davidson C, Nichols HL, Abel M, et al. Functional inhibition of PAR2 alleviates allergen-induced airway hyperresponsiveness and inflammation. Clin Exp Allergy. 2015;45:1844–55.

    CAS  PubMed  Google Scholar 

  36. Williams JC, Lee RD, Doerschuk CM, Mackman N. Effect of PAR-2 deficiency in mice on KC expression after intratracheal LPS administration. J Signal Transduct. 2011;2011:415195.

    PubMed  PubMed Central  Google Scholar 

  37. Pejler G, Ronnberg E, Waern I, Wernersson S. Mast cell proteases: multifaceted regulators of inflammatory disease. Blood. 2010;115:4981–90.

    CAS  PubMed  Google Scholar 

  38. Compton SJ, Cairns JA, Holgate ST, Walls AF. The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1 beta and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J Immunol. 1998;161:1939–46.

    CAS  PubMed  Google Scholar 

  39. He S, Peng Q, Walls AF. Potent induction of a neutrophil and eosinophil-rich infiltrate in vivo by human mast cell tryptase: selective enhancement of eosinophil recruitment by histamine. J Immunol. 1997;159:6216–25.

    CAS  PubMed  Google Scholar 

  40. Schmidlin F, Amadesi S, Vidil R, Trevisani M, Martinet N, Caughey G, et al. Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle. Am J Respir Crit Care Med. 2001;164:1276–81.

    CAS  PubMed  Google Scholar 

  41. Huang C, Friend DS, Qiu WT, Wong GW, Morales G, Hunt J, et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol. 1998;160:1910–9.

    CAS  PubMed  Google Scholar 

  42. Thakurdas SM, Melicoff E, Sansores-Garcia L, Moreira DC, Petrova Y, Stevens RL, et al. The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J Biol Chem. 2007;282:20809–155.

    CAS  PubMed  Google Scholar 

  43. Reynolds DS, Gurley DS, Austen KF, Serafine WE. Cloning of the cDNA and gene of mouse mast cell protease-6-transcription by progenitor mast cells and mast cells of the connective tissue subclass. J Biol Chem. 1991;266(6):3847–53.

    CAS  PubMed  Google Scholar 

  44. Caughey GH. Protease mediators of anaphylaxis, chapter 6. In: Castells MC, editor. Anaphylaxis and hypersensitivity reactions. p. 89–106; 2011. ISBN 978-1-60327-950-5. https://doi.org/10.1007/978-1-60327-951-2

  45. Matos NA, Silva JF, Matsui TC, Damasceno KA, Duarte ID, Lemos VS, et al. Mast cell tryptase induces eosinophil recruitment in the pleural cavity of mice via proteinase-activated receptor 2. Inflammation. 2013;36:1260–7.

    CAS  PubMed  Google Scholar 

  46. Lohman RJ, Cotterell AJ, Barry GD, Liu L, Suen JY, Vesey DA, et al. An antagonist of human protease activated receptor-2 attenuates PAR2 signaling, macrophage activation, mast cell degranulation, and collagen-induced arthritis in rats. FASEB J. 2012;26:2877–87.

    CAS  PubMed  Google Scholar 

  47. Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, et al. A short-term model of COPD identifies a role for mast cell tryptase. J Allergy Clin Immunol. 2013;131(3):752–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-Rocha S, Dery O, Grady EF, et al. Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J Physiol. 2003;547(2):531–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oshiro A, Otani H, Yagi Y, Fukuhara S, Inagaki C. Protease-activated receptor-2-mediated inhibition for Ca2+ response to lipopolysaccharide in Guinea pig tracheal epithelial cells. Am J Respir Cell Mol Biol. 2004;30:886–92.

    CAS  PubMed  Google Scholar 

  50. Krishna MT, Chauhan A, Little L, Sampson K, Hawksworth R, Mant T, et al. Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen-induced late-phase airway obstruction in asthma. J Allergy Clin Immunol. 2001;107:1039–45.

    CAS  PubMed  Google Scholar 

  51. Matos NA, Silva JF, Damasceno KA, Cassali GD, Lemos VS, Duarte ID, et al. Proteinase-activated receptor 2 blockade impairs CCL11- or allergen-induced eosinophil recruitment in experimental pleurisy. Eur J Pharmacol. 2014;740:627–33.

    CAS  PubMed  Google Scholar 

  52. Miike S, McWilliam AS, Kita H. Trypsin induces activation and inflammatory mediator release from human eosinophils through protease-activated receptor-2. J Immunol. 2001;167:6615–22.

    CAS  PubMed  Google Scholar 

  53. Senden NH, Jeunhomme TM, Heemskerk JW, Wagenvoord R, van’t Veer C, Hemker HC, et al. Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol. 1998;161:4318–24.

    CAS  PubMed  Google Scholar 

  54. Ostrowska E, Sokolova E, Reiser G. PAR-2 activation and LPS synergistically enhance inflammatory signaling in airway epithelial cells by raising PAR expression level and interleukin-8 release. Am J Physiol Lung Cell Mol Physiol. 2007;293:L1208–L12181218.

    CAS  PubMed  Google Scholar 

  55. Chao HH, Chen PY, Hao WR, Chiang WP, Cheng TH, Loh SH, et al. Lipopolysaccharide pretreatment increases protease-activated receptor-2 expression and monocyte chemoattractant protein-1 secretion in vascular endothelial cells. J Biomed Sci. 2017;24:85.

    PubMed  PubMed Central  Google Scholar 

  56. Bakele M, Lotz-Havla AS, Jakowetz A, Carevic M, Marcos V, Muntau AC, et al. An interactive network of elastase, secretases, and PAR-2 protein regulates CXCR1 receptor surface expression on neutrophils. J Biol Chem. 2014;289:20516–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Marshall JS. Mast-cell responses to pathogens. Nat Rev Immunol. 2004;4:787–99.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG/Brazil), Grant Number PPM-00593-16. A.D.A. was a graduate student fellow from the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq/Brazil), A.C.M.L.F. and A.B. are graduate students from CNPq. L.O.A., M.F.L. and G.D.C. are research fellows from the CNPq. I.S.S. and and R.M.F. are graduate student from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil)

Author information

Authors and Affiliations

Authors

Contributions

ADA: conceptualization, investigation, formal analysis, writing original draft; ISS, WFB, ACMLF, RMF, AB: investigation; LOA, MFL: resources; GDC: resources, formal analysis; AK: supervision, project administration, funding acquisition, writing review and editing.

Corresponding author

Correspondence to André Klein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All the experimental procedures were approved by the UFMG Animal Ethics Committee (CEUA/UFMG 150/2017).

Additional information

Responsible Editor: Bernhard Gibbs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, A.D., Silva, I.S., Fernandes-Braga, W. et al. A role for mast cells and mast cell tryptase in driving neutrophil recruitment in LPS-induced lung inflammation via protease-activated receptor 2 in mice. Inflamm. Res. 69, 1059–1070 (2020). https://doi.org/10.1007/s00011-020-01376-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01376-4

Keywords

Navigation