Skip to main content
Log in

Reflection of thermoelastic plane waves at a stress-free insulated solid boundary with memory-dependent derivative

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present manuscript, a two-dimensional generalized thermoelastic model is used to study the problem of reflection of thermoelastic plane waves from a stress-free and thermally insulated boundary of thermally conducting isotropic homogeneous elastic material. The Lord–Shulman model under the heat transfer law with memory-dependent derivative is employed to model this problem. The case of total reflection is taken into account to calculate the critical angle. Phase velocities and corresponding attenuation factors of the coupled dilatational elastic-thermal waves and the ratios of the reflection coefficients are calculated and illustrated graphically for copper-like material and highlighted the effects of various parameters of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Nowacki Dynamic Problems of Thermoelasticity (Leyden: Noordhof) (1975)

    MATH  Google Scholar 

  2. H W Lord and Y A Shulman J. Mech. Phys. Solids 15 299 (1967)

    ADS  Google Scholar 

  3. A E Green and K A Lindsay J. Elast. 2 1 (1972)

    Google Scholar 

  4. A E Green and P M Naghdi Proc. R. Soc. Lond. Ser. A 432 171194 (1991)

    Google Scholar 

  5. A E Green and P M Naghdi J. Therm. Stress. 15 253 (1992)

    ADS  Google Scholar 

  6. A E Green and P M Naghdi J. Elast. 31 189 (1993)

    Google Scholar 

  7. D Y Tzou ASME J. Heat. Transf. 117 8 (1995)

    Google Scholar 

  8. D S Chandrasekharaiah Appl. Mech. Rev. 51 705 (1998)

    ADS  Google Scholar 

  9. S K Roychoudhuri J. Therm. Stress. 30 231 (2007)

    Google Scholar 

  10. M I A Othman and I A Abbas Int. J. Thermophys. 33 913 (2012)

    ADS  Google Scholar 

  11. I A Abbas and H M Youssef Meccanica 48 331 (2013)

    MathSciNet  Google Scholar 

  12. A M Zenkour and I A Abbas Int. J. Mech. Sci. 84 54 (2014)

    Google Scholar 

  13. I A Abbas J. Comput. Theor. Nanostruct. 11 987 (2014)

    Google Scholar 

  14. I A Abbas Mech. Based Des. Struct. 43 501 (2015)

    Google Scholar 

  15. M Marin and S Nicaise Contin. Mech. Thermodyn. 28 1645 (2016)

    ADS  MathSciNet  Google Scholar 

  16. M Marine Struc. Eng. Mech. 61 381 (2017)

    Google Scholar 

  17. M Marina and E M Craciun Compos. Part B Eng. 126 27 (2017)

    Google Scholar 

  18. F Mainardi Fractional Calculus and Waves in Linear Viscoelasticity (London: Imperial College Press) (2010)

    MATH  Google Scholar 

  19. Y A Rossikhin and M V Shitikova Appl. Mech. Rev. 63 1562 (2011)

    Google Scholar 

  20. Y Z Povstenko Phys. Scr. T136 014017 (2009)

    ADS  Google Scholar 

  21. H H Sherief, A M A El-Sayed and A M Abd El-Latief Int. J. Solids Struct. 47 269 (2010)

  22. H M Youssef J. Heat Transf. 132 061301-1 (2010)

    Google Scholar 

  23. Y J Yu Eur. J. Mech. A Solids 188 42 (2013)

    Google Scholar 

  24. J L Wang and H-F Li Comput. Math. Appl. 62 1562 (2011)

    MathSciNet  Google Scholar 

  25. Y J Yu, W Hu and X G Tian Int. J. Eng. Sci. 81 123 (2014)

    Google Scholar 

  26. M A Ezzat, A S El-Karamany and A A El-Bary Int. J. Mech. Sci. 89 470 (2014)

    Google Scholar 

  27. M A Ezzat J. Electromagnet. Waves Appl.29 1018 (2015)

    Google Scholar 

  28. M A Ezzat, A S El-Karamany, and A A El-Bary Eur. Phys. J. Plus. 131 131 (2016)

    ADS  Google Scholar 

  29. K Lotfy and N Sarkar Mech. Time-Depend. Mater. 21 15 (2017)

    Google Scholar 

  30. K Lotfy Chaos Solitons Fractals 99 233 (2017)

    ADS  MathSciNet  Google Scholar 

  31. K Lotfy Phys. B 537 320 (2018)

    ADS  Google Scholar 

  32. K Lotfy, A A El-Barya and R S Tantawi Eur. Phys. J. Plus 134 280 (2019)

    Google Scholar 

  33. S B Sinha and K A Elsibai J. Therm. Stress. 19 763 (1996)

    Google Scholar 

  34. J N Sharma J. Therm. Stress. 26 925 (2003)

    Google Scholar 

  35. N C Das, A Lahiri, S Sarkar and S Basu Comput. Math. Appl. 56 2795 (2008)

    MathSciNet  Google Scholar 

  36. J N Sharma, D Grover and D Kaur Appl. Math. Model. 35 3396 (2011)

    MathSciNet  Google Scholar 

  37. Y Q Song, J T Bai and Z Y Ren Acta Mech. 223 1545 (2012)

    MathSciNet  Google Scholar 

  38. M C Singh and N Chakraborty Appl. Math. Model. 39 1409 (2015)

    MathSciNet  Google Scholar 

  39. S M Abo-Dahab J. Heat Transf. 140 102005-1 (2018)

    Google Scholar 

  40. N Sarkar, S De and N Sarkar Wave Random Complex https://doi.org/10.1080/17455030.2019.1623433 (2019)

  41. N Sarkar, D Ghosh and A Lahiri Mech. Adv. Mater. Struct. 26 957 (2019)

    Google Scholar 

  42. S Biswas and N Sarkar Mech. Mater.126 140 (2018)

    Google Scholar 

  43. N Sarkar J. Electromagnet. Waves Appl. 33 1354 (2019)

    Google Scholar 

  44. J Billingham and A C King Wave Motion (New York: Cambridge University Press) (2011)

    MATH  Google Scholar 

  45. J D Achenbach Wave Propagation in Elastic Solids (New York: North-Holland) (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Editor and the reviewers for their constructive and valuable comments and suggestions to improve the quality of the manuscript.

Funding

The authors received no financial support for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen De.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, N., De, S. Reflection of thermoelastic plane waves at a stress-free insulated solid boundary with memory-dependent derivative. Indian J Phys 95, 1203–1211 (2021). https://doi.org/10.1007/s12648-020-01788-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01788-2

Keywords

Navigation