Skip to main content
Log in

Integrated radial basis functions (IRBFs) to simulate nonlinear advection–diffusion equations with smooth and non-smooth initial data

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, a meshfree method for the numerical solution of conversation law equations is considered. Some problems which have shock such as advection problems are not properly solved by radial basis function collocation meshfree method. Therefore, we use the integrated radial basis function (IRBF) method for some of these problems. In the current study, the governing models have been discretized by IRBF technique in the spatial direction and by finite difference approximation for time variable. This converts the main problem to a system of nonlinear ordinary differential equations (ODEs). Furthermore, the obtained ODEs will be solved by Runge–Kutta technique. This is the meshless method of lines technique. Numerical examples indicate the acceptable accuracy, proficiency and easy implementation of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Abbaszadeh M, Dehghan M (2019) The reproducing kernel particle Petrov–Galerkin method for solving two-dimensional nonstationary incompressible Boussinesq equations. Eng Anal Bound Elem 106:300–308

    MathSciNet  MATH  Google Scholar 

  2. Abbaszadeh M, Dehghan M (2019) A meshless numerical investigation based on the RBF-QR approach for elasticity problems. AUT J Math Comput (AJMC) (in press)

  3. Abbaszadeh M, Dehghan M (2019) The interpolating element-free Galerkin method for solving Korteweg-de Vries-Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn 96:1345–1365

    MATH  Google Scholar 

  4. Abedian R, Adibi H, Dehghan M (2013) A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Comput Phys Commun 184:1874–1888

    MathSciNet  MATH  Google Scholar 

  5. Anderson D, Tannehill JC, Pletcher RH (2016) Computational fluid mechanics and heat transfer. CRC Press, London

    MATH  Google Scholar 

  6. Benkhaldoun F, Sari S, Seaid M (2015) A family of finite volume Eulerian-Lagrangian methods for two-dimensional conservation laws. J Comput Appl Math 285:181–202

    MathSciNet  MATH  Google Scholar 

  7. Dag I, Canivar A, Sahin A (2011) Taylor–Galerkin and Taylor–Collocation methods for the numerical solutions of Burgers’ equation using B-splines. Commun Nonlinear Sci Numer Simul 16:2696–2708

    MathSciNet  MATH  Google Scholar 

  8. Dehghan M, Abbaszadeh M (2017) The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations. J Comput Phys 351:478–510

    MathSciNet  MATH  Google Scholar 

  9. Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79(3):700–715

    MathSciNet  MATH  Google Scholar 

  10. Dehghan M, Abbaszadeh M (2018) The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations. Alex Eng J 57(2):1137–1156

    Google Scholar 

  11. Dehghan M, Jazlanian R (2010) On the total variation of a third-order semi-discrete central scheme for 1D conservation laws. J Vib Cont 17(9):1348–1358

    MathSciNet  MATH  Google Scholar 

  12. Dehghan M, Jazlanian R (2011) A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws. Comput Phys Commun 182:1284–1294

    MathSciNet  MATH  Google Scholar 

  13. Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions. Comput Math Appl 54:136–146

    MathSciNet  MATH  Google Scholar 

  14. Dehghan M (2004) Numerical solution of the three-dimensional advection–diffusion equation. Appl Math Comput 150(1):5–19

    MathSciNet  MATH  Google Scholar 

  15. Driscoll TA, Heryudono ARH (2007) Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput Math Appl 53(6):927–939

    MathSciNet  MATH  Google Scholar 

  16. Duijn CJV, Peletier LA, Pop IS (2007) A new class of entropy solutions of Buckley–Leverett equation. SIAM J Math Anal 39(2):507–536

    MathSciNet  MATH  Google Scholar 

  17. Fasshauer GE, McCourt M (2012) Stable evaluation of Gaussian RBF interpolants. SIAM J Sci Comput 34(2):737–762

    MathSciNet  MATH  Google Scholar 

  18. Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, Singapore

    MATH  Google Scholar 

  19. Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230:2270–2285

    MathSciNet  MATH  Google Scholar 

  20. Fornberg B, Lehto E, Powell C (2013) Stable calculation of Gaussian-based RBF-FD stencils. Comput Math Appl 65:627–637

    MathSciNet  MATH  Google Scholar 

  21. Ho PL, Le CV, Tran-Cong T (2018) Limit state analysis of reinforced concrete slabs using an integrated radial basis function based mesh-free method. Appl Math Model 53:1–11

    MATH  Google Scholar 

  22. Ho PL, Le CV, Tran-Cong T (2016) Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design. Eng Anal Bound Elem 71:92–100

    MathSciNet  MATH  Google Scholar 

  23. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915

    Google Scholar 

  24. Lin J, Zhang C, Sun L, Lu J (2018) Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method. Adv Appl Math Mech 10(2):322–342

    MathSciNet  MATH  Google Scholar 

  25. Lin J, Reutskiy YS, Lu J (2018) A novel meshless method for fully nonlinear advection–diffusion–reaction problems to model transfer in anisotropic media. Appl Math Comput 339:459–476

    MathSciNet  MATH  Google Scholar 

  26. Lin J, Xu Y, Zhang Y (2020) Simulation of linear and nonlinear advection-diffusion-reaction problems by a novel localized scheme. Appl Math Lett 99. Article ID 106005

  27. Lin J, Reutskiy S, (2020) A cubic B-spline semi-analytical method for 3D steady-state convection–diffusion–reaction problems. Appl Math Comput 371. Article ID 124944

  28. Li XK, Zienkiewicz OC (1990) A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain. Int J Numer Meth Eng 30(6):1195–1212

    MATH  Google Scholar 

  29. Li XK, Zhang S, Wang Y, Chen H (2016) Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations. Comput Math Appl 71:1655–1678

    MathSciNet  MATH  Google Scholar 

  30. Lin SY, Wu TM, Chin YS (1993) Upwind finite-volume method with a triangular mesh for conservation laws. J Comput Phys 107:324–337

    MathSciNet  MATH  Google Scholar 

  31. Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33:940–950

    MathSciNet  MATH  Google Scholar 

  32. Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput Phys Commun 188:59–67

    MathSciNet  MATH  Google Scholar 

  33. Powell MJD (1992) The theory of radial basis function approximation in 1990. Adv Numer Anal 105–210

  34. Mai-Duy N, Tanner RI (2007) A collocation method based on one-dimensional RBF interpolation scheme for solving PDEs. Int J Numer Meth H 17(2):165–186

    MathSciNet  MATH  Google Scholar 

  35. Mai-Duy N, Tran-Cong T (2008) A multidomain integrated radial basis function collocation method for elliptic problems. Numer Meth Part Differ Equ 24(5):1301–1320

    MathSciNet  MATH  Google Scholar 

  36. Mai-Duy N (2017) Compact approximation stencils based on integrated flat radial basis functions. Eng Anal Bound Elem 74:79–87

    MathSciNet  MATH  Google Scholar 

  37. Mai-Duy N (2014) A compact 9 point stencil based on integrated RBFs for the convection-diffusion equation. Appl Math Model 38(4):1495–1510

    MathSciNet  MATH  Google Scholar 

  38. Mai-Duy N, Tran-Cong T (2011) Compact local integrated-RBF approximations for second-order elliptic differential problems. J Comput Phys 230(12):4772–4794

    MathSciNet  MATH  Google Scholar 

  39. Muller F, Jenny P, Meyer DW (2013) Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media. J Comput Phys 250:685–702

    MathSciNet  Google Scholar 

  40. Sarra SA (2012) A local radial basis function method for advection diffusion reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865

    MathSciNet  MATH  Google Scholar 

  41. Sarra SA (2014) Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation. Eng Anal Bound Elem 44:76–86

    MathSciNet  MATH  Google Scholar 

  42. Sarra SA (2011) Radial basis function approximation methods with extended precision floating point arithmetic. Eng Anal Bound Elem 35:68–76

    MathSciNet  MATH  Google Scholar 

  43. Sarra SA (2005) Adaptive radial basis function methods for time dependent partial differential equations. Appl Numer Math 54:79–94

    MathSciNet  MATH  Google Scholar 

  44. Sarra SA, Kansa EJ (2009) Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv Comput Mech 2(2)

  45. Sarra SA (2006) Integrated multiquadric radial basis function approximation methods. Comput Math Appl 51:1283–1296

    MathSciNet  MATH  Google Scholar 

  46. Sethian JA, Chorin AJ, Concus P (1983) Numerical solution of the Buckley–Leverett equations. SPE Reservoir Simulation Symposium, 15–18 November, California

    Google Scholar 

  47. Seydaoglu M, Erdogan U, Ozis T (2016) Numerical solution of Burgers equation with high order splitting methods. J Comput Appl Math 291:410–421

    MathSciNet  MATH  Google Scholar 

  48. Shu C, Wu YL (2007) Integrated radial basis functions-based differential quadrature method and its performance. Int J Numer Meth Fluids 5(6):969–984

    MATH  Google Scholar 

  49. Wang Y, Kao CY (2013) Central schemes for the modified Buckley–Leverett equation. J Comput Sci 4:12–23

    Google Scholar 

  50. Wazwaz AM (2007) Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl Math Comput 190:1198–1206

    MathSciNet  MATH  Google Scholar 

  51. Wu YS, Pruess K, Chen ZX (1990) Buckley–Leverett flow in composite porous media. SPE Advanced Technology Series

  52. Zhang L, Ouyang J, Wang X, Zhang X (2010) Variational multiscale element-free Galerkin method for 2D Burgers equation. J Comput Phys 229:7147–7161

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to appreciate reviewers that their comments and suggestions improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimijahan, A., Dehghan, M. & Abbaszadeh, M. Integrated radial basis functions (IRBFs) to simulate nonlinear advection–diffusion equations with smooth and non-smooth initial data. Engineering with Computers 38, 1071–1106 (2022). https://doi.org/10.1007/s00366-020-01039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01039-2

Keywords

Mathematics Subject Classification

Navigation