Skip to main content

Advertisement

Log in

Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The mountain cryosphere is one of the strongest affected systems by climate change. Glacier shrinkage leads to cascading impacts, including changes in river flow regimes, availability of water resources for downstream populations and economy, changes in the occurrence and severity of natural hazards, and cultural changes associated with landscape character and identity. In this study, we analyze impacts of mountain cryosphere change through a lens of Loss and Damage (L&D), a mechanism of international climate policy that tries to evaluate and reduce negative consequences of climate change for societies. We analyze the effects of climate change on glacier change, glacier lake formation and growth, hydrological regimes, and associated impacts on human societies in the Cordillera Blanca in the Peruvian Andes, now and under future scenarios. We use various methods such as literature review, glacial lake outburst flood, and hydrologic modeling to examine three major dimensions of cryospheric change and associated human impacts: (i) ice loss; (ii) glacial hazards; and (iii) variability of water availability. We identify the damage and losses in terms of the number of people affected by glacial hazards, monetized agricultural crop loss due to water loss, and non-economic values local people attribute to glacier loss. We find that different levels of warming have important negative but differentiated effects on natural and human systems. We also contend that the extent of loss and damage will largely be determined by governance and adaptation decisions such as water resource management and disaster risk management. We suggest that these lines of evidence are more explicitly taken into account in L&D policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen RG, Pereira SL, Raes D, Martin S (1998) Crop evapotranspiration : guidelines for computing crop water requirements / by Richard G. Allen ... [et al.]. FAO Irrig Drain Pap 56 1–15

  • ANA (2012) Glacier outlines Cordillera Blanca, Peru 1970 and 2012, Shape files, Unidad de Glaciología y Recursos Hídricos (UGRH), Autoridad Nacional del Agua (ANA), Huaraz, Peru

  • Apaéstegui J, Espinoza R (2017) Estimación, evaluación y análisis de la demanda hídrica en la cuenca del río Quillcay (Ancash, Perú) desde un enfoque de Gestión Integrada de los Recursos Hídricos. Huaraz, Peru

    Google Scholar 

  • Baraer M, Mark BG, McKenzie JM et al (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58:134–150

    Google Scholar 

  • Bárdossy A, Pegram G (2014) Infilling missing precipitation records – a comparison of a new copula-based method with other techniques. J Hydrol 519:1162–1170

    Google Scholar 

  • Bolin I (2009) The glaciers of the Andes are melting: indigenous and anthropological knowledge merge in restoring water resources. In: Crate SA, Nuttal M (eds) Anthropol Clim Chang From Encount to actions. Left Coast Press, Walnut Creek, CA, pp 228–239

  • Bury JT, Mark BG, McKenzie JM et al (2011) Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim Chang 105:179–206

    Google Scholar 

  • Buytaert W, Moulds S, Acosta L et al (2017) Glacial melt content of water use in the tropical Andes. Environ Res Lett 12:114014

    Google Scholar 

  • Carey M (2005) Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Glob Planet Chang 47:122–134

    Google Scholar 

  • Carey M (2010) In the shadow of melting glaciers: climate change and Andean Society. Oxford University Press, USA

    Google Scholar 

  • Carey M, Huggel C, Bury J et al (2012) An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru. Clim Chang 112:733–767

    Google Scholar 

  • Colonia D, Torres J, Haeberli W et al (2017) Compiling an inventory of glacier-bed overdeepenings and potential new lakes in de-glaciating areas of the Peruvian Andes: approach, first results, and perspectives for adaptation to climate change. Water 9:336

    Google Scholar 

  • Drenkhan F, Carey M, Huggel C et al (2015) The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wiley Interdiscip Rev Water 2:715–733

    Google Scholar 

  • Drenkhan F, Huggel C, Guardamino L, Haeberli W (2019) Managing risks and future options from new lakes in the deglaciating Andes of Peru: the example of the Vilcanota-Urubamba basin. Sci Total Environ 665:465–483

    Google Scholar 

  • Dunbar KW, Marcos KDM (2012) Singing for shaved ice: glacial loss and raspadilla in the Peruvian Andes. In: Consumer culture in Latin America. Palgrave Macmillan US, New York, pp 195–205

    Google Scholar 

  • Emmer A (2017) Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quat Sci Rev 177:220–234

    Google Scholar 

  • Emmer A, Klimeš J, Mergili M et al (2016) 882 lakes of the Cordillera Blanca: an inventory, classification, evolution and assessment of susceptibility to outburst floods. CATENA 147:269–279

    Google Scholar 

  • Emmer A, Vilímek V (2014) New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru. Hydrol Earth Syst Sci 18:3461–3479

    Google Scholar 

  • EMMSA (2019) Volumen y Precios Díarios. http://www.emmsa.com.pe/index.php/estadisticas/volumen-y-precios-diarios. Accessed 6 Mar 2019

  • Frey H, Haeberli W, Linsbauer A et al (2010) A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. Nat Hazards Earth Syst Sci 10:339–352

    Google Scholar 

  • Frey H, García Hernández J, Huggel C et al (2014) An Early Warning System for lake outburst floods of the Laguna 513, Cordillera Blanca, Peru. In: International Conference on Analysis and Management of Changing Risks for Natural Hazards, 18-19 November 2014

  • Frey H, Huggel C, Chisolm RE et al (2018) Multi-source glacial Lake outburst flood hazard assessment and mapping for Huaraz, Cordillera Blanca, Peru. Front Earth Sci 6:210

    Google Scholar 

  • Gagné K, Rasmussen MB, Orlove B (2014) Glaciers and society: attributions, perceptions, and valuations. Wiley Interdiscip Rev Clim Chang 5:793–808

    Google Scholar 

  • Geofabrik GmbH (2018) OpenStreetMap Peru. https://download.geofabrik.de/south-america/peru.html. Accessed 26 Sep 2018

  • Georges C (2004) 20th-century glacier fluctuations in the tropical Cordillera Blanca, Peru. Arct Antarct Alp Res 36:100–107

    Google Scholar 

  • Gobierno Regional de Ancash (2017) Campañas agrícola 2016–2017: Huaraz. http://agroancash.gob.pe/agro/estadistica-agricola/.

  • Gose P (1994) Deathly waters and hungry mountains: agrarian ritual and class formation in an Andean town. University of Toronto Press, Toronto

    Google Scholar 

  • Gurgiser W, Juen I, Singer K et al (2016) Comparing peasants’ perceptions of precipitation change with precipitation records in the tropical Callejón de Huaylas, Peru. Earth Syst Dynam 7:499–515

    Google Scholar 

  • Gurgiser W, Marzeion B, Nicholson L et al (2013) Modeling energy and mass balance of shallap glacier, Peru. Cryosphere 7:1787–1802

    Google Scholar 

  • Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y,... Steltzer H. I.(2019) Chapter 2: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. In H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, … N. M. Weyer (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp. 131–202). In Press.

  • Hofflinger A, Somos-Valenzuela MA, Vallejos-Romero A (2019) Response time to flood events using a social vulnerability index (ReTSVI). Nat Hazards Earth Syst Sci 19:251–267

    Google Scholar 

  • Hubbard B, Heald A, Reynolds JM et al (2005) Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surf Process Landforms 30:1251–1264

  • Huggel C, Kääb A, Haeberli W, Krummenacher B (2003) Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Nat Hazards Earth Syst Sci 3:647–662

    Google Scholar 

  • Huggel C, Muccione V, Carey M et al (2019) Loss and damage in the mountain cryosphere. Reg Environ Chang 19:1387–1399

    Google Scholar 

  • Huss M, Bookhagen B, Huggel C et al (2017) Toward mountains without permanent snow and ice. Earth’s Futur 5:418–435

    Google Scholar 

  • Huss M, Hock R (2018) Global-scale hydrological response to future glacier mass loss. Nat Clim Chang 8:135–140

    Google Scholar 

  • INAIGEM (2018) Inventario Nacional de Glaciares - Las Cordilleras Glaciares del Perú. Huaraz

    Google Scholar 

  • INEI (2017) Resultados definitivos Censos Nacionales 2017: Áncash

  • Jurt C, Brugger J, Dunbar KW et al (2015) Cultural values of glaciers. In: Huggel C, Carey M, Clague JJ, Kääb A (eds) The high-mountain cryosphere - environmental changes and human risks. Cambridge University Press, Cambridge and New York, pp 90–106

    Google Scholar 

  • Klimeš J, Benešová M, Vilímek V et al (2014) The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru. Nat Hazards 71:1617–1638. https://doi.org/10.1007/s11069-013-0968-4

  • Linsbauer A, Paul F, Haeberli W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach. J Geophys Res 117:F03007

    Google Scholar 

  • Linton J, Budds J (2014) The hydrosocial cycle: defining and mobilizing a relational-dialectical approach to water. Geoforum 57:170–180

    Google Scholar 

  • Mark BG, Bury J, McKenzie JM et al (2010) Climate change and tropical Andean glacier recession: evaluating hydrologic changes and livelihood vulnerability in the Cordillera Blanca, Peru. Ann Assoc Am Geogr 100:794–805

    Google Scholar 

  • Mark BG, French A, Baraer M et al (2017) Glacier loss and hydro-social risks in the Peruvian Andes. Glob Planet Chang 159:61–76

    Google Scholar 

  • Marzeion B, Kaser G, Maussion F, Champollion N (2018) Limited influence of climate change mitigation on short-term glacier mass loss. Nat Clim Chang 8:305–308

    Google Scholar 

  • McDowell G, Huggel C, Frey H et al (2019) Adaptation action and research in glaciated mountain systems: are they enough to meet the challenge of climate change? Glob Environ Chang 54:19–30

    Google Scholar 

  • Mechler R, Bouwer LM, Schinko T et al (eds) (2019) Loss and damage from climate change : concepts, methods and policy options. Springer International Publishing, Cambridge

    Google Scholar 

  • Milner AM, Khamis K, Battin TJ et al (2017) Glacier shrinkage driving global changes in downstream systems. PNAS 114:9770–9778

    Google Scholar 

  • Molle F, Mollinga PP, Meinzen-Dick R (2008) Water, politics and development: introducing water alternatives. Water Altern 1:1–6

    Google Scholar 

  • Morrissey J, Oliver-Smith A (2013) Perspectives on non- economic loss and damage understanding values at risk from climate change. Loss and Damage in Vulnerable Countries Initiative Report

  • Neukom R, Rohrer M, Calanca P et al (2015) Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environ Res Lett 10:84017

    Google Scholar 

  • Paerregaard K (2018) Power in/of/as water: Revisiting the hydrologic cycle in the Peruvian Andes. Wiley Interdiscip Rev Water 5(2):e1270. https://doi.org/10.1002/wat2.1270

  • PROFODUA (2008) Propuesta de Asignaciones de Agua en Bloque Volúmenes Anuales y Mensuales, para la Formalización de los Derechos de Uso de Agua Cuenca Alto Santa en la Comision de regantes Quillcay. Lima

  • Rabatel A, Francou B, Soruco A et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosph 7:81–102

    Google Scholar 

  • Rasmussen M, French A, Conlon S (2019) Conservation conjunctures: contestation and situated consent in Peru’s Huascarán National Park. Conserv Soc 17:1

    Google Scholar 

  • Rasmussen MB (2018) Rewriting conservation landscapes: protected areas and glacial retreat in the high Andes. Reg Environ Chang 19:1371–1385. https://doi.org/10.1007/s10113-018-1376-9

  • Roberts E, Pelling M (2018) Climate change-related loss and damage: translating the global policy agenda for national policy processes climate change-related loss and damage: translating the global policy agenda for national policy processes. Clim Dev 10:4–17

    Google Scholar 

  • Schauwecker S, Rohrer M, Huggel C et al (2017) The freezing level in the tropical Andes, Peru: an indicator for present and future glacier extents. J Geophys Res 122:5172–5189

    Google Scholar 

  • Schneider D, Huggel C, Cochachin A et al (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155

    Google Scholar 

  • Smakhtin V, Revenga C, Döll P (2004) A pilot global assessment of environmental water requirements and scarcity. Water Int 29:307–317

    Google Scholar 

  • Somos-Valenzuela MA, Chisolm RE, Rivas DS et al (2016) Modeling a glacial lake outburst flood process chain: the case of Lake Palcacocha and Huaraz, Peru. Hydrol Earth Syst Sci 20:2519–2543

    Google Scholar 

  • Stensrud AB (2016) “It seems like a lie”: the everyday politics of world-making in contemporary Peru. In: Bertelsen BE, Bendixsen SKN (eds) Critical anthropological engagements in human alterity and difference. Springer International Publishing, pp253–272

  • Témez JR (1977) Modelo Matemático de Transformación “Precipitación – Aportación.” Asociación de Investigación Industrial Eléctrica (ASINTEL)

  • Tschakert P, Ellis NR, Anderson C et al (2019) One thousand ways to experience loss: a systematic analysis of climate-related intangible harm from around the world. Glob Environ Chang 55:58–72

    Google Scholar 

  • United Nations Framework Convention on Climate Change (UNFCCC) Conference of the Parties (2013) Report of the Conference of the Parties on its nineteenth session: decisions adopted by the Conference of the Parties FCCC/CP/2013/10/Add.1. Warsaw

  • Vilímek V, Zapata ML, Klimeš J, et al (2005) Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2:107–115. https://doi.org/10.1007/s10346-005-0052-6

  • Vilímek V, Klimeš J, Emmer A, Benešová M (2015) Geomorphologic impacts of the glacial lake outburst flood from Lake No. 513 (Peru). Environ Earth Sci 73:5233–5244. https://doi.org/10.1007/s12665-014-3768-6

  • Walter D (2003) La domestication de la nature dans les Andes péruviennes : l’alpiniste, le paysan et le parc national du Huascarán. L’Harmattan

  • Warner K, van der Geest K (2013) Loss and damage from climate change: local-level evidence from nine vulnerable countries. Int J Glob Warm 5:367–386

    Google Scholar 

  • Warner K, Van Der Geest K, Kreft S, et al (2012) Evidence from the frontlines of climate change: loss and damage to communities despite coping and adaptation. Loss and damage in vulnerable countries initiative. Policy report. Report no. 9. Bonn

  • Wegner SA (2014) Lo que el agua se llevó. Consecuencias y lecciones del aluvión de Huaraz de 1941. Notas Técnicas sobre Cambio Climático, 7, Huaraz, Peru

  • Westoby MJ, Glasser NF, Brasington J, et al (2014) Modelling outburst floods from moraine-dammed glacial lakes. Earth-Science Rev.

    Google Scholar 

  • Winkler M, Juen I, Mölg T et al (2009) Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú. Cryosphere 3:21–30

    Google Scholar 

  • Wrathall DJ, Oliver-Smith A, Fekete A et al (2015) Problematising loss and damage. Int J Glob Warm 8:274–294

    Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Proyecto Glaciares+ funded by the Swiss Agency for Development and Cooperation, H. Frey for his input on GLOFs, F. Drenkhan for support for aspects of water resources, S. Schauwecker for providing glacier outlines, and A. Thür for her work on local people’s perceptions.

Funding

This study has been funded by the Swiss National Science Foundation (project AguaFuturo, no. 205121L_166272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Motschmann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motschmann, A., Huggel, C., Carey, M. et al. Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru. Climatic Change 162, 837–858 (2020). https://doi.org/10.1007/s10584-020-02770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-020-02770-x

Keywords

Navigation