Skip to main content
Log in

On Active Impulsive Noise Control (AINC) Systems

Developing a Filtered-Reference Adaptive Algorithm Using a Convex-Combined Normalized Step-Size Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper develops an efficient adaptive filtering algorithm for active impulsive noise control (AINC) systems. For AINC systems, the filtered-x least mean square (FxLMS) algorithm fails to converge due to the impulsive nature of the noise source. In previous work, the step-size of the FxLMS algorithm was normalized using the power estimate of the error as well as the reference signals, resulting in the improved normalized step-size FxLMS (INSS-FxLMS) algorithm. The INSS-FxLMS algorithm exhibits a robust performance for AINC systems; however, it uses a preselected fixed step-size. Therefore, the INSS-FxLMS algorithm results in a compromise between convergence speed and noise reduction. The proposed algorithm employs a convex-combined step-size (CCSS) within the framework of the INSS-FxLMS algorithm. While normalization takes care of the impulsive nature of noise, the CCSS solves the above-mentioned trade-off issue. Essentially, the CCSS selects a large (small) value of the step-size in the transient (steady) state of the AINC system. It is demonstrated by extensive computer simulations that the proposed algorithm outperforms the existing counterparts for a variety of case studies in AINC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A few ad hoc modifications have been employed for the FxLMK algorithm [27]. These include using the \({\text {sgn}}(\cdot )\) operator with both e(n) and \({\mathbf {x}}_f(n)\) and performing normalization with respect to e(n) in update equation (7).

References

  1. M.T. Akhtar, W. Mitsuhashi, Improving robustness of filtered-x least mean p-power algorithm for active attenuation of standard symmetric-\(alpha\)-stable impulsive noise. Appl. Acoust. 72, 688–694 (2011)

    Google Scholar 

  2. M.T. Akhtar, Fractional lower order moment based adaptive algorithms for active noise control of impulsive noise sources. J. Acoust. Soc. Am. 132(6), EL456–EL462 (2012)

    Article  Google Scholar 

  3. M.T. Akhtar, A time-varying normalized step-size based generalized fractional moment adaptive algorithm and its application to ANC of impulsive sources. Appl. Acoust. 155, 240–249 (2019)

    Article  Google Scholar 

  4. M.T. Akhtar, W. Mitsuhashi, Improving performance of FxLMS algorithm for active noise control of impulsive noise. J. Sound Vibr. 327(3–5), 647–656 (2009)

    Article  Google Scholar 

  5. M.T. Akhtar, W. Mitsuhashi, A modified normalized FxLMS algorithm for active control of impulsive noise. Proc. EUSIPCO 2010, 1–5 (2010)

    Google Scholar 

  6. M.T. Akhtar, M. Abe, M. Kawamata, A New variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems. IEEE Trans. Audio Speech Lang. Process. 14(2), 720–726 (2006)

    Article  Google Scholar 

  7. M.T. Akhtar, A convex-combined step-size-based normalized modified filtered-x least mean square algorithm for impulsive active noise control systems. Proc. EUSIPCO 2018, 2468–2472 (2018)

    Google Scholar 

  8. J. Arenas-García, V. Gómez-Verdejo, A.R. Figueiras-Vidal, New algorithms for improved adaptive convex combination of LMS transversal filters. IEEE Trans. Instrum. Meas. 54(6), 2239–2249 (2005)

    Article  Google Scholar 

  9. L.A. Azpicueta-Ruiz, M.T.M. Silva, V.H. Nascimento, A.H. Sayed, Combinations of adaptive filters: performance and convergence properties. IEEE Signal Process. Mag. 33(1), 120–140 (2016)

    Article  Google Scholar 

  10. J. Benesty, H. Rey, L.R. Vega, S. Tressens, A nonparametric VSS NLMS algorithm. IEEE Signal Process. Lett. 13(10), 581–584 (2006)

    Article  Google Scholar 

  11. M. Bergamasco, F.D. Rossa, L. Piroddi, Active noise control with on-line estimation of non-Gaussian noise characteristics. J. Sound Vibr. 331, 27–40 (2012)

    Article  Google Scholar 

  12. R. Candido, M.T.M. Silva, V.H. Nascimento, Transient and steady-state analysis of the affine combination of two adaptive filters. IEEE Trans. Signal Process. 58(8), 4064–4078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.C. Douglas, A family of normalized LMS algorithms. IEEE Sig. Process. Lett. 1(3), 49–51 (1994)

    Article  Google Scholar 

  14. S.J. Elliot, Signal Processing for Active Control (Academic Press, London, 2001)

    Google Scholar 

  15. S.J. Elliot, P.A. Nelson, Active noise control. IEEE Signal Process. Mag. 10, 12–35 (1993)

    Article  Google Scholar 

  16. B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications, 2nd edn. (Wiley, Hoboken, 2013)

    Book  MATH  Google Scholar 

  17. M. Ferrer, A. Gonzalez, M. deDiego, G. Piñero, Convex combination filtered-x algorithms for active noise control systems. IEEE Trans. Audio Speech Lang. Process. 21(1), 156–167 (2013)

    Article  Google Scholar 

  18. N.V. George, A. Gonzalez, Convex combination of nonlinear adaptive filters for active noise control. Appl. Acoust. 76, 157–161 (2014)

    Article  Google Scholar 

  19. F. Huang, J. Zhang, Y. Pang, A novel combination scheme of proportionate filter. Signal Process. 143, 222–231 (2018)

    Article  Google Scholar 

  20. A. Hyvarinen, E. Oja, Independent component analysis: algorithms and applications. Neural Networks. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  21. S. Kozat, A.T. Erdogan, A.C. Singer, A.H. Sayed, Steady-state MSE performance analysis of mixture approaches to adaptive filtering. IEEE Trans. Signal Process. 58(8), 4050–4063 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. S.M. Kuo, D.R. Morgan, Active Noise Control Systems-Algorithms and DSP Implementations (Wiley, New York, 1996)

    Google Scholar 

  23. S.M. Kuo, D.R. Morgan, Active Noise Control: A tutorial review. Proc. IEEE 87, 943–973 (1999)

    Article  Google Scholar 

  24. R.H. Kwong, E.W. Johnston, A variable step size LMS algorithm. IEEE Trans. Signal Process. 40, 1633–1642 (1992)

    Article  MATH  Google Scholar 

  25. R. Leahy, Z. Zhou, Y.C. Hsu, Adaptive filtering of stable processes for active attenuation of impulsive noise. Proc. IEEE ICASSP 1995(5), 2983–2986 (1995)

    Google Scholar 

  26. L. Liu, S. Gujjula, P. Thanigai, S.M. Kuo, Still in womb: intrauterine acoustic embedded active noise control for infant incubators. Adv. Acoust. Vibr. 2008, 9 pages, (2008)

  27. L. Lu, H. Zhao, Improved filtered-x least mean kurtosis algorithm for active noise control. Circuits Syst. Signal. Process. 36, 1586–1603 (2017)

    Article  Google Scholar 

  28. C.L. Nikias, Signal Processing with Alpha-Stable Distribution and Applications (Wiley, New York, 1995)

    Google Scholar 

  29. G. Pinte, W. Desmet, P. Sas, Active control of repetitive transient noise. J. Sound Vibr. 307, 513–526 (2007)

    Article  Google Scholar 

  30. M. Shao, C.L. Nikias, Signal processing with fractional lower order moments: stable processes and their applications. Proc. IEEE 81(7), 986–1010 (1993)

    Article  Google Scholar 

  31. H.C. Shin, A.H. Syed, W.J. Song, Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett. 11(2), 132–135 (2004)

    Article  Google Scholar 

  32. P. Song, H. Zhao, Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control. Mech. Syst. Signal Process. 107, 93–104 (2018)

    Article  Google Scholar 

  33. X. Sun, S.M. Kuo, G. Meng, Adaptive algorithm for active control of impulsive noise. J. Sound Vibr. 291(1–2), 516–522 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Sun, M. Li, T.C. Lim, Enhanced filtered-x least mean M-estimate algorithm for active impulsive noise control. Appl. Acoust. 90, 31–41 (2015)

    Article  Google Scholar 

  35. G. Sun, M. Li, T.C. Lim, A family of threshold based robust adaptive algorithms for active impulsive noise control. Appl. Acoust. 97, 30–36 (2015)

    Article  Google Scholar 

  36. L.R. Vega, H. Rey, J. Benesty, S. Tressens, A new robust variable step-size NLMS algorithm. IEEE Trans. Signal Process. 56(5), 1878–1893 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Wang, F. Ding, Y. Chu, Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle. Inf. Sci. 222, 203–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Wang, Z. Zhang, B. Xue, Decoupled parameter estimation methods for Hammerstein systems by using filtering techniques. IEEE Access. 6, 66612–66620 (2018)

    Article  Google Scholar 

  39. S. Zhang, J. Zhang, New steady-state analysis of variable step-size LMS algorithm with different noise distributions. IEEE Signal Process. Lett. 21(6), 653–657 (2014)

    Article  Google Scholar 

  40. S. Zhang, W.X. Zheng, J. Zhang, A new combined-step-size normalized least mean square algorithm for cyclostationary inputs. Signal Process. 141, 261–272 (2017)

    Article  Google Scholar 

  41. Y.L. Zhou, Y.X. Yin, Q.Z. Zhang, An optimal repetitive control algorithm for periodic impulsive noise attenuation in a non-minimum phase ANC system. Appl. Acoust. 74, 1175–1181 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their critical evaluation and insightful comments, which have greatly helped in improving the manuscript. This research was partially supported by the Faculty Development Competitive Research Grants Program of Nazarbayev University under Grant Number 110119FD4525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tahir Akhtar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, M.T. On Active Impulsive Noise Control (AINC) Systems. Circuits Syst Signal Process 39, 4354–4377 (2020). https://doi.org/10.1007/s00034-020-01368-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01368-z

Keywords

Navigation