Skip to main content
Log in

The Effect of Oxygen to Salen-Co Complexes for the Copolymerization of PO/CO2

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of Salen-Co(II) complexes were synthesized to study the effect of O2 on the catalytic performance of Salen-Co complexes for the copolymerization of PO/CO2. The Salen-Co(II) complexes showed low activity on the cyclo-addition of CO2 to PO with the aid of a cocatalyst such as PPNCl. Unexpectedly, with the addition of O2, the activity of Salen-Co(II) complexes was obviously increased and 100% cyclic carbonate was obtained. As the pressure of O2 increased, the activity of the complex also increased. With the existence of O2, the activity of the complexes was influenced by their structures and the pressure of O2, and the complexes with the conjugated structure showed higher activity. The structures of cocatalyst also played a crucial role as for the change of the activity. By altering the electrophilicity of Salen-Co(III), O2 can also be used as cocatalyst for the copolymerization of PO/CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poland, S. J.; Darensbourg, D. J. A quest for polycarbonates provided Wa sustainable epoxide/CO2 popolyererizotion processes. Green Chem. 2017, 19, 4990–5011.

    CAS  Google Scholar 

  2. Wang, S.; Xi, C. J. Recent advances in nucleophile-triggered CO2-incorporated cyclieation leading to heterocycles. Chem. Soc. Rev. 2019, 48, 382–404.

    CAS  PubMed  Google Scholar 

  3. Wu, P. Y.; Li, Y.; Zheng, J. J.; Hosono, N.; Otake, K.; Wang, J.; Liu, Y. H.; Xia, L. L.; Jiang, M.; Sakaki, S.; Kitagawa, S. Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nat. Commun. 2019, 10, 8.

    Google Scholar 

  4. Grignard, B.; Gennen, S.; Jerome, C.; Kleij, A. W.; Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 2019, 48, 4466–4514.

    CAS  PubMed  Google Scholar 

  5. Kamphuis, A. J.; Picchioni, F.; Pescarmona, P. P. CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chem. 2019, 21, 406–448.

    CAS  Google Scholar 

  6. Shaikh, R. R.; Pornpraprom, S.; D’Elia, V. Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal. 2018, 8, 419–450.

    CAS  Google Scholar 

  7. Comerford, J. W.; Ingram, I. D. V.; North, M.; Wu, X. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem. 0015, 17, 1966–1987.

    Google Scholar 

  8. Burkart, M. D.; Hazari, N.; Tway, C. L.; Zeitler, E. L. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal. 2019, 9, 7937–7956.

    CAS  Google Scholar 

  9. Yadav, N.; Seidi, F.; Crespy, D.; D’Elia, V. Polymers based on cyclic carbonates as trait d’union between polymer chemistry and sustainable CO2 utilization. ChemSusChem 2019, 12, 724–754.

    CAS  PubMed  Google Scholar 

  10. de la Crue-Marinez, F.; Buchaca, M. M. D.; Martinez, J.; Fernandez-Baeza, J.; Sanchez-Barba, L. F.; Rodriguez-Dieguez, A.; Castro-Osma, J. A.; Lara-Sanchez, A. Synthesis of bio-derived cyclic carbonates from renewable resources. ACS Sustain. Chem. Eng. 2019, 7, 20126–20138.

    Google Scholar 

  11. Nagae, H.; Aoki, R.; Akutagawa, S.; Kleemann, J.; Tagawa, R.; Schindler, T.; Choi, G.; Spaniol, T. P.; Tsurugi, H.; Okuda, J.; Mashima, K. Lanthanide complexes supported by a trizinc crown ether as catalysts for alternating copolymerization of epoxide and CO2: telomerization controlled by carboxylate anions. Angew. Chem. Int. Ed. 2018, 57, 2492–2496.

    CAS  Google Scholar 

  12. Wu, G. P.; Ren, W. M.; Luo, Y.; Li, B.; Zhang, W. Z.; Lu, X. B. Enhanced asymmetric induction for the copolymerization of CO2 and cyclohexene oxide with unsymmetric enantiopure salenCo(III) complexes: synthesis of crystalline CO2-based polycarbonate. J. Am. Chem. Soc. 2012, 134, 5682–5688.

    CAS  PubMed  Google Scholar 

  13. Zhuo, C. W.; Qin, Y. S.; Wang, X. H.; Wang, F. S. Steric hindrance ligand strategy to aluminum porphyrin catalyst for completely alternative copolymerization of CO2 and propylene oxide. Chinese J. Polym. Sci. 2018, 36, 252–260.

    CAS  Google Scholar 

  14. Lv, X. B. Stereoregular CO2 copolymers: from amorphous to crystalline materials. Acta Polymerica Sinica (in Chinese) 2016, 1166–1178.

  15. Honda, M.; Abe, H. Development of a H3PW12O40/CeO2 catalyst for bulk ring-opening polymerization of a cyclic carbonate. Green Chem. 2018, 20, 4995–5006.

    CAS  Google Scholar 

  16. Steinbauer, J.; Spannenberg, A.; Werner, T. An in situ formed Ca2+-crown ether complex and its use in CO2-fixation reactions with terminal and internal epoxides. Green Chem. 2017, 19, 3769–3779.

    CAS  Google Scholar 

  17. Toda, Y.; Komiyama, Y.; Kikuchi, A.; Suga, H. Tetraarylphosphonium salt-catalyzed carbon dioxide fixation at atmospheric pressure for the synthesis of cyclic carbonates. ACS Catal. 2016, 6, 6906–6910.

    CAS  Google Scholar 

  18. Castro-Osma, J. A.; Lamb, K. J.; North, M. Cr(salophen) complex catalyzed cyclic carbonate synthesis at ambient temperature and pressure. ACS Catal. 2016, 6, 5012–5025.

    CAS  Google Scholar 

  19. Qin, Y. S.; Guo, H. C.; Sheng, X. F.; Wang, X. H.; Wang, F. S. An aluminum porphyrin complex with high activity and selectivity for cyclic carbonate synthesis. Green Chem. 2015, 17, 2853–2858.

    CAS  Google Scholar 

  20. Li, Y. D.; Cui, D. X.; Zhu, J. C.; Huang, P.; Tian, Z.; Jia, Y. Y.; Wang, P. A. Bifunctional phase-transfer catalysts for fixation of CO2 with epoxides under ambient pressure. Green Chem. 2019, 21, 5231–5237.

    CAS  Google Scholar 

  21. Kim, Y.; Hyun, K.; Ahn, D.; Kim, R.; Park, M. H.; Kim, Y. Efficient aluminum catalysts for the chemical conversion of CO2 into cyclic carbonates at room temperature and atmospheric CO2 pressure. ChemSusChem 2019, 12, 4211–4220.

    CAS  PubMed  Google Scholar 

  22. Longwitz, L.; Steinhauer, J.; Spannenberg, A.; Werner, T. Calcium-based catalytic system for the synthesis of bio-derived cyclic carbonates under mild conditions. ACS Catal. 2018, 8, 665–672.

    CAS  Google Scholar 

  23. Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R. Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Acc. Chem. Res. 2004, 37, 836–844.

    CAS  PubMed  Google Scholar 

  24. Szewczyk, M.; Magre, M.; Zubar, V.; Rueping, M. Reduction of cyclic and linear organic carbonates using a readily available magnesium catalyst. ACS Catal. 2019, 9, 11634–11639.

    CAS  Google Scholar 

  25. Chen, F.; Liu, N.; Dai, B. Iron(II) bis-CNN pincer complex-catalyzed cyclic carbonate synthesis at room temperature. ACS Sustain. Chem. Eng. 2017, 5, 9065–9075.

    CAS  Google Scholar 

  26. de la Cruz-Martinez, F.; Martinez, J.; Gaona, M. A.; Fernandez-Baeza, J.; Sanchez-Barba, L. F.; Rodriguez, A. M.; Castro-Osma, J. A.; Otero, A.; Lara-Sanchez, A. Bifunctional aluminum catalysts for the chemical fixation of carbon dioxide into cyclic carbonates. ACS Sustain. Chem. Eng. 2018, 6, 5322–5332.

    CAS  Google Scholar 

  27. Kaneko, S.; Shirakawa, S. Potassium iodide-tetraethylene glycol complex as a practical catalyst for CO2 fixation reactions with epoxides under mild conditions. ACS Sustain. Chem. Eng. 2017, 5, 2836–2840.

    CAS  Google Scholar 

  28. Bai, D. S.; Wang, Q. O.; Song, Y. Y.; Li, B.; Jing, H. W. Synthesis of cyclic carbonate from epoxide and CO2 catalyzed by magnetic nanoparticle-supported porphyrin. Catal. Commun. 2011, 12, 684–688.

    CAS  Google Scholar 

  29. Wang, Y.; Qin, Y. S.; Wang, X. H.; Wang, F. S. Coupling reaction between CO2 and cyclohexene oxide: selective control from cyclic carbonate to polycarbonate by ligand design of salen/salalen titanium complexes. Catal. Sci. Technol. 2014, 4, 3964–3972.

    CAS  Google Scholar 

  30. Buchard, A.; Kember, M. R.; Sandeman, K. G.; Williams, C. K. A bimetallic iron(III) catalyst for CO2/epoxide coupling. Chem. Commun. 2011, 47, 212–214.

    CAS  Google Scholar 

  31. Ema, T.; Miyazaki, Y.; Koyama, S.; Yano, Y.; Sakai, T. A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates. Chem. Commun. 2012, 48, 4489–4491.

    CAS  Google Scholar 

  32. Jia, F.; Chen, X. Y.; Zheng, Y.; Qin, Y. S.; Tao, Y. H.; Wang, X. H. One-pot atom-efficient synthesis of bio-renewable polyesters and cyclic carbonates through tandem catalysis. Chem. Commun. 2015, 51, 8504–8507.

    CAS  Google Scholar 

  33. Tenhumberg, N.; Buttner, H.; Schaffner, B.; Kruse, D.; Blumenstein, M.; Werner, T. Cooperative catalyst system for the synthesis of oleochemical cyclic carbonates from CO2 and renewables. Green Chem. 2016, 18, 3775–3788.

    CAS  Google Scholar 

  34. Wu, W.; Sheng, X. F.; Qin, Y. S.; Qiao, L. J.; Miao, Y. Y.; Wang, X. H.; Wang, F. S. Bifunctional aluminum porphyrin complex: soil tolerant catalyst for copolymerization of CO2 and propylene oxide. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2346–2355.

    CAS  Google Scholar 

  35. Han, B.; Zhang, L.; Zhang, H. Y.; Ding, H. N.; Liu, B. Y.; Wang, X. H. One-pot synthesis and postpolymerization functionalization of cyclic carbonate/epoxide-difunctional polycarbonates prepared by regioselective diepoxide/CO2 copolymerization. Polym. Chem. 2016, 7, 4453–4457.

    CAS  Google Scholar 

  36. Liu, J.; Ren, W. M.; Liu, Y.; Lu, X. B. Kinetic study on the coupling of CO2 and epoxides catalyzed by Co(III) complex with an inter- or intramolecular nucleophilic cocatalyst. Macromolecules 2013, 46, 1343–1349.

    CAS  Google Scholar 

  37. Lu, X. B.; Wang, Y. Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew. Chem. Int. Ed. 2004, 43, 3574–3577.

    CAS  Google Scholar 

  38. Lu, X. B.; Liang, B.; Zhang, Y. J.; Tian, Y. Z.; Wang, Y. M.; Bai, C. X.; Wang, H.; Zhang, R. Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic epoxides. J. Am. Chem. Soc. 2004, 126, 3732–3733.

    CAS  PubMed  Google Scholar 

  39. Ren, W. M.; Zhang, X.; Liu, Y.; Li, J. F.; Wang, H.; Lu, X. B. Highly active, bifunctional Co(III)-salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and terpolymerization with aliphatic epoxides. Macromolecules 2010, 43, 1396–1402.

    CAS  Google Scholar 

  40. Ren, W. M.; Liu, Z. W.; Wen, Y. Q.; Zhang, R.; Lu, X. B. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J. Am. Chem. Soc. 2009, 131, 11509–11518.

    CAS  PubMed  Google Scholar 

  41. Li, B.; Zhang, R.; Lu, X. B. Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules 2007, 40, 2303–2307.

    CAS  Google Scholar 

  42. Wu, G. P.; Wei, S. H.; Ren, W. M.; Lu, X. B.; Xu, T. Q.; Darensbourg, D. J. Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems. J. Am. Chem. Soc. 2011, 133, 15191–15199.

    CAS  PubMed  Google Scholar 

  43. Wu, G. P.; Wei, S. H.; Lu, X. B.; Ren, W. M.; Darensbourg, D. J. Highly selective synthesis of CO2 copolymer from styrene oxide. Macromolecules 2010, 43, 9202–9204.

    CAS  Google Scholar 

  44. Wu, G. P.; Xu, P. X.; Lu, X. B.; Zu, Y. P.; Wei, S. H.; Ren, W. M.; Darensbourg, D. J. Crystalline CO2 copolymer from epichlorohydrin via Co(III)-complex-mediated stereospecific polymerization. Macromolecules 2013, 46, 2128–2133.

    CAS  Google Scholar 

  45. Liu, Y.; Ren, W. M.; Liu, J.; Lu, X. B. Asymmetric copolymerization of CO2 with meso-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity. Angew. Chem. Int. Ed. 2013, 52, 11594–11598.

    CAS  Google Scholar 

  46. Wu, X.; Chen, C. T.; Guo, Z. Y.; North, M.; Whitwood, A. C. Metaland halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. ACS Catal. 2019, 9, 1895–1906.

    CAS  Google Scholar 

  47. Sibaouih, A.; Ryan, P.; Leskela, M.; Rieger, B.; Repo, T. Facile synthesis of cyclic carbonates from CO2 and epoxides with cobalt(II)/onium salt based catalysts. Appl. Catal. A-Gen. 2009, 365, 194–198.

    CAS  Google Scholar 

  48. Paddock, R. L.; Nguyen, S. T. Chiral (Salen)Co-III catalyst for the synthesis of cyclic carbonates. Chem. Commun. 2004, 1622–1623.

  49. Qin, Z. Q.; Thomas, C. M.; Lee, S.; Coates, G. W. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed. 2003, 42, 5484–5487.

    CAS  Google Scholar 

  50. Ahmed, S. M.; Poater, A.; Childers, M. I.; Widger, P. C. B.; LaPointe, A. M.; Lobkovsky, E. B.; Coates, G. W.; Cavallo, L. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study. J. Am. Chem. Soc. 2013, 135, 18901–18911.

    CAS  PubMed  Google Scholar 

  51. Decortes, A.; Castilla, A. M.; Kleij, A. W. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew. Chem. Int. Ed. 2010, 49, 9822–9837.

    CAS  Google Scholar 

  52. Liu, Y.; Ren, W. M.; Wang, M.; Liu, C.; Lu, X. B. Crystalline stereocomplexed polycarbonates: hydrogen-bond-driven interlocked orderly assembly of the opposite enantiomers. Angew. Chem. Int. Ed. 2015, 54, 2241–2244.

    CAS  Google Scholar 

  53. Rulev, Y. A.; Larionov, V. A.; Lokutova, A. V.; Moskalenko, M. A.; Lependina, O. L.; Maleev, V. I.; North, M.; Belokon, Y. N. Chiral cobalt(III) complexes as bifunctional bronsted acid-lewis base catalysts for the preparation of cyclic organic carbonates. ChemSusChem 2016, 9, 216–222.

    CAS  PubMed  Google Scholar 

  54. Ren, W. M.; Wang, Y. M.; Zhang, R.; Jiang, J. Y.; Lu, X. B. Mechanistic aspects of metal valence change in SalenCo(III)OAc-catalyzed hydrolytic kinetic resolution of racemic epoxides. J. Org. Chem. 2013, 78, 4801–4810.

    CAS  PubMed  Google Scholar 

  55. Duan, R.; Hu, C.; Sun, Z.; Zhang, H.; Pang, X.; Chen, X. Conjugated tri-nuclear Salen-Co complexes for the copolymerization of epoxides/CO2: cocatalyst-free catalysis. Green Chem. 2019, 21, 4723–4731.

    CAS  Google Scholar 

  56. Darensbourg, D. J. Chain transfer agents utilized in epoxide and CO2 copolymerization processes. Green Chem. 2019, 21, 2214–2223.

    CAS  Google Scholar 

  57. Zhao, Y. J.; Wang, Y.; Zhou, X. P.; Xue, Z. G.; Wang, X. H.; Xie, X. L.; Poli, R. Oxygen-triggered switchable polymerization for the one-pot synthesis of CO2-based block copolymers from monomer mixtures. Angew. Chem. Int. Ed. 2019, 58, 14311–14318.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key Research and Development Program of China (No. 2016YFC1100701) and the National Natural Science Foundation of China (Nos. 21574124, 51503203, and 51773200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Pang or Xue-Si Chen.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, RL., Zhou, YC., Sun, ZQ. et al. The Effect of Oxygen to Salen-Co Complexes for the Copolymerization of PO/CO2. Chin J Polym Sci 38, 1124–1130 (2020). https://doi.org/10.1007/s10118-020-2451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2451-5

Keywords

Navigation