Skip to main content
Log in

Bio-inspired VANET routing optimization: an overview

A taxonomy of notable VANET routing problems, overview, advancement state, and future perspective under the bio-inspired optimization approaches

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This paper demonstrates a recapitulated historic evolution further to a future overview of all vehicular ad-hoc network (VANET) routing problems that concern either directly related routing tasks or targeting a set of diverse routing-related techniques with the aid of the bio-inspired approaches. In this lecture, we serialize, in a synchronous observation, the evolution and tendencies of the VANET routing problem’s solving simultaneously with the emergence of different classes of nature-based meta-heuristics, by bringing a proposed taxonomy of different major VANET routing problems seen their nature, studied range and metaheuristic types used for their optimization. Then, we follow with a visionary deduction of the other appearing routing issues of VANETs that can be approached or already began to be solved by nature-inspired optimization algorithms. Noting that each spread routing problem is illustrated with notable related works, describing initially realized conventional protocols to vulgarize different routing modules, then detailing bio-inspired protocols for VANET routing to explain the utility of nature-inspired optimization techniques. The motivation of this work came from the lack of a reference classifying the VANET-related routing problems within the notion of nature-inspired optimization. That’s further to giving and up-to-date literature on the context for opening out a visionary opinion on the tendencies of either emerging recent bio-inspired optimization approaches or the different metaheuristic-based combinations on specific VANET routing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

5G:

Fifth generation

ABC:

Artificial bee colony

ACO:

Ant colony optimization

ADR:

Average delivery rate

AE2ED:

Average end-to-end delay

AISs:

Artificial immune systems

AODV:

Ad-hoc on-demand distance vector

AOMDV:

Ad-hoc on-demand multipath distance vector

BCO:

Bee colony optimization

BFOA:

Bacterial foraging optimization algorithm

CBR:

Cluster based routing

CBRP:

Cluster based routing protocol

CH:

Cluster head

CM:

Cluster member

CMs:

Cluster members

CN:

Cluster node

CNs:

Cluster nodes

CSA:

Cuckoo search algorithm

DE:

Differential evolution

DSDV:

Destination sequenced distance vector

DSR:

Dynamic source routing

DTN:

Delay-tolerant network

E2ED:

End-to-end delay

EA:

Evolutionary algorithm

ED:

Euclidean distance

GA:

Genetic algorithm

GPS:

Geographic positioning system

GPCR:

Greedy perimeter coordinator routing

GPSR:

Greedy perimeter stateless routing

Greedy-V2V:

Greedy vehicle-to-vehicle

GRP:

Geography-based routing protocol

GSR:

Geographic source routing

IARP:

IntrA-routing protocol

ID:

IDentifier

IERP:

IntEr-routing protocol

IoT:

Internet-of-things

IRC:

Inter-roadside communication

MANETs:

Mobile ad-hoc networks

MAS:

Multi-agent system

MOPs:

Multi-objective optimization problems

MRP:

Multicast routing problem

NRL:

Normalized routing load

NS2:

Network simulator

OBU:

On-board unit

OLSR:

Optimized link state routing

PDR:

Packet delivery ratio

PSO:

Particle swarm optimization

QoS:

Quality of service

RREQ:

Route REQuest

RSSI:

Received signal strength indicator

RSU:

Road side unit

SA:

Simulated annealing

SCF:

Store-carry-and-forward

TCP:

Transmission control protocol

TS:

Tabu search

TSP:

Travel salesman problem

TTL:

Time-to-live

UAV:

Unmanned aerial vehicle

V2C:

Vehicle-to-cloud

V2I:

Vehicle-to-infrastructure

V2R:

Vehicle-to-roadside

V2U:

Vehicle-to-UAV

V2V:

Vehicle-to-vehicle

VCC:

Vehicular cloud computing

VDTN:

Vehicular delay-tolerant network

VNI:

Virtual navigation interface

VRP:

Vehicle routing problem

ZBR:

Zone based routing

ZRP:

Zone routing protocol

WANETs:

Wireless ad-hoc networks

WSNs:

Wireless sensor networks

References

  • Aadil F, Bajwa KB, Khan S, Chaudary NM, Akram A (2016) CACONET: Ant colony optimization (ACO) based clustering algorithm for VANET. PLOS ONE 11(5):e0154080

    Article  Google Scholar 

  • Ababou M, Elkouch R, Bellafkih M, Ababou N (2014a) AntProPHET: a new routing protocol for delay tolerant networks. In: Proceedings of the \(14{th}\) Mediterranean microwave symposium, Marrakech. IEEE

  • Ababou M, Elkouch R, Bellafkih M, Ababou N (2014b) BeeAntDTN: a nature inspired routing protocol for delay tolerant networks. In: Proceedings of the \(14{th}\) Mediterranean microwave symposium, Marrakech. IEEE

  • Abbasi IA, Nazir B, Abbasi A, Bilal SM, Madani SA (2014) A traffic flow oriented routing protocol for vANET. EURASIP J Wirel Commun Netw 121:1–14

    Google Scholar 

  • Agarwal RK, Mathuria M, Sharma M (2017) Study of routing algorithms in DTN enabled vehicular ad-hoc network. Int J Comput Appl 159(7):1–6

    Google Scholar 

  • Ahmadi S-A (2016) Human behavior-based optimization: a novel metaheuristic approach to solve complex optimization problems. Neural Comput Appl 28(1):233–244

    Google Scholar 

  • Ahmed B, Malik AW, Hafeez T (2019) Ahmed N (2019) Services and simulation frameworks for vehicular cloud computing: a contemporary survey. EURASIP J Wirel Commun Netw 4:1–21

    Google Scholar 

  • Ahmed SH, Kang H, Kim D (2015) Vehicular delay tolerant network (VDTN): routing perspectives. In Proceedings of IEEE \(12{th}\) Consumer communications and networking conference, pp 898–903, Las Vegas. IEEE

  • Alba E, Luque G, Garcia-Nieto J, Ordonez G, Leguizamón G (2007) MALLBA: a software library to design efficient optimisation algorithms. Int J Innovative Comput Appl 1(1):74–85

    Article  Google Scholar 

  • Ali AF, Hassanien A-E (2016) A survey of metaheuristics methods for bioinformatics applications. In: Hassanien A-E, Grosan C, Tolba MF (eds) Applications of intelligent optimization in biology and medicine, chapter 2. Springer, Switzerland, pp 23–46

    Chapter  Google Scholar 

  • Alijla BO, Wong L-P, Lim CP, Khader AT, Al-Betar MA (2014) A modified intelligent water drops algorithm and its application to optimization problems. Expert Syst Appl 41(15):6555–6569

    Article  Google Scholar 

  • Allal S, Boudjit S (2013) Geocast routing protocols for VANETs: survey and geometry-driven scheme proposal. J Internet Serv and Inform Secur 3(1–2):20–36

    Google Scholar 

  • Aloise D, Deshpande A, Hansen P, Popat P (2009) Np-hardness of Euclidean sum-of-squares clustering. Mach Learn 75(2):245–248

    Article  MATH  Google Scholar 

  • Alouache L, Nguyen N, Aliouat M, Chelouah R (2018) Survey on IoV routing protocols: security and network architecture. Wiley, Hoboken

    Google Scholar 

  • Amudhavel J, Kumar KP, Narmatha T, Sampathkumar S, Jaiganesh S, Vengattaraman T (2015a) Multi-objective clustering methodologies and its applications in VANET. In: International conference on advanced research in computer science engineering & technology (ICARCSET ’15), Unnao. ACM, pp 1083–1092

  • Amudhavel, J., Rajaguru, D., Kumar, S. S. (2015b). A chaotic krill herd optimization approach in VANET for congestion free effective multi hop communication. In: Proceedings of the (2015) international conference on advanced research in computer science engineering & technology (ICARCSET 2015). Unnao, ACM, India

  • Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the \(18{th}\) annual ACM-society for industrial and applied mathematics symposium on discrete algorithms, New Orleans, Louisiana. ACM, pp 1027–1035

  • Atashpendar A, Dorronsoro B, Danoy G, Bouvry P (2016) A parallel cooperative coevolutionary SMPSO algorithm for multi-objective optimization. In: International conference on high performance computing & simulation, Innsbruck. IEEE, pp 714–720

  • Azzoug Y, Boukra A (2019) Reactive topology-based routing for VANETs: a new bio-inspired solution. In \(8{th}\) international conference on advances in vehicular systems, technologies and applications, Roma

  • Balaji S, Sureshkumar S, Saravanan G (2013) Cluster based ant colony optimization routing for vehicular ad-hoc networks. Int J Sci Eng Res 4(6):26–30

    Google Scholar 

  • Bello-Salau H, Aibinu A, Wang Z, Onumanyi A, Onwuka E, Dukiya J (2019) An optimized routing algorithm for vehicle ad-hoc networks. Eng Sci Technol Int J 22(3):754–766

    Google Scholar 

  • Benamar N, Singh KD, Benamar M, Ouadghiri DE, Bonnin J-M (2014) Routing protocols in vehicular delay tolerant networks: a comprehensive survey. Comput Commun 48:141–158

    Article  Google Scholar 

  • Bernsen J, Manivannan D (2012) RIVER: a reliable inter-vehicular routing protocol for vehicular ad hoc networks. Comput Netw 56(17):3795–3807

    Article  Google Scholar 

  • Bhagyavathi M, Saritha V (2016) Leapfrog and particle swarm optimization based multipath routing for VANETs. Contemp Eng Sci 9(31):1525–1533

    Article  Google Scholar 

  • Binitha S, Sathya SS (2012) A survey of bio inspired optimization algorithms. Int J Soft Comput Eng 2(2):137–151

    Google Scholar 

  • Bitaghsir SA, Hendessi F (2011) An intelligent routing protocol for delay tolerant networks using genetic algorithm. In Balandin S, Koucheryavy Y, Hu H (eds), Proceedings of the 2004 \(11{th}\) international conference on next generation wired/wireless networking and the \(4{th}\) conference on smart spaces. Lecture Notes in Computer Science book series, vol 6869. Springer, St. Petersburg., pp 335–347

  • Bitam S, Mellouk A (2011) QoS swarm bee routing protocol for vehicular ad-hoc networks. In: Proceedigs of IEEE International Conference on Communications, Kyoto

  • Bitam S, Mellouk A (2013) Bee life-based multi constraints multicast routing optimization for vehicular Ad-hoc networks. J Netw Comput Appl 36(3):981–991

    Article  Google Scholar 

  • Bitam S, Mellouk A (2015) Cloud computing-based message dissemination protocol for vehicular ad hoc networks. international conference on wired/wireless internet communication. Springer, Cham, pp 32–45

  • Bitam S, Mellouk A, Fowler S (2013a) MQBV: multicast quality of service swarm bee routing for vehicular Ad-hoc networks. Wirel Commun Mob Comput 15(9):1391–1404

    Article  Google Scholar 

  • Bitam S, Mellouk A, Zeadally S (2013b) HyBR: a hybrid bio-inspired bee swarm routing protocol for safety applications in Vehicular Ad-hoc NETworks. J Syst Architect 59(10–B):953–967

  • Bitam S, Mellouk A, Zeadally S (2014) Bio-inspired routing algorithms survey for vehicular ad-hoc networks. IEEE Commun Surv Tutor 17(2):843–867

    Article  Google Scholar 

  • Bitam S, Mellouk A, Zeadally S (2015) VANET-cloud: a generic cloud computing model for vehicular Ad hoc networks. IEEE Wirel Commun 22(1):96–102

    Article  Google Scholar 

  • Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci Int J 237:82–117

    MathSciNet  MATH  Google Scholar 

  • Cao Z, Hei X, Wang L, Shi Y, Rong X (2015) An improved brain storm optimization with differential evolution strategy for applications of ANNs. Math Prob Eng. https://doi.org/10.1155/2015/923698

    Article  Google Scholar 

  • Cañas DR, Orozco ALS, Villalba LJG, Hoon Kim T (2017) A family of ACO routing protocols for mobile ad-hoc networks. Sensors 17(5):1179

    Article  Google Scholar 

  • Chawla SK, Kamboj S (2014) Geocast routing in vehicular ad-hoc networks: a survey. Int J Comput Sci Inf Technol 5(4):5365–5370

    Google Scholar 

  • Chen C, Liu L, Zhang N, Wang S (2016) A Bio-inspired Geographic Routing in VANETs. In: IEEE international conference on intelligent transportation engineering. Singapore, pp162–166

  • Chen Y-M, Wei Y-C (2013) A beacon-based trust management system for enhancing user centric location privacy in VANETs. J Commun Netw 15(2):153–163

    Article  Google Scholar 

  • Cheng P-C, Lee KC, Gerla M, Härri J (2010) GeoDTN+Nav: geographic DTN routing with navigator prediction for urban vehicular environments. Mob Netw Appl 15(1):61–82

    Article  Google Scholar 

  • Cherif AH, Boussetta K, Diaz G, Fedoua D (2017) Improving the performances of geographic VDTN routing protocols. In: Proceedings of the \(16{th}\) annual mediterranean ad-hoc networking workshop (Med-Hoc-Net), Budva. IEEE

  • Chhabra S (2016) Efficient routing in vehicular ad-hoc networks using firefly optimization. Master’s thesis, Thapar University

  • Chou L-D, Yang J-Y, Hsieh Y-C, Tung C-F (2010) Intersection-based routing protocol for VANET. \(2{nd}\) international conference on ubiquitous and future networks (ICUFN). Jeju, South Korea. IEEE, pp 268–272

  • Chouhan P, Kaushal G, Prajapati U (2016) Comparative study MANET and VANET. Int J Adv Trends Comput Sci Eng 5(4):16079–16083

    Google Scholar 

  • Chowdhary N, Kaur PD (2017) Dynamic route optimization using nature-inspired algorithms in IoV. In: Proceedings of \(1{st}\) international conference on smart system, innovations and computing, Jaipur, India. Springer, pp 495–504

  • Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR). https://tools.ietf.org/rfc/rfc3626.txt. RFC 3626

  • Corson S, Macker J (1999) Mobile ad-hoc networking (MANET): routing protocol performance issues and evaluation considerations. https://tools.ietf.org/rfc/rfc2501.txt

  • Darwish T, Bakar KA (2015) Traffic aware routing in vehicular ad hoc networks: characteristics and challenges. Telecommun Syst 61(3):489–513

    Article  Google Scholar 

  • de Andrade GE, de Paula Lima LA, Calsavara A, de Oliveira JA, Michelon G (2016) Message routing in vehicular delay-tolerant networks based on human behavior. In: Proceedings of the \(10{th}\) international symposium on communication systems, networks and digital signal processing, Prague. IEEE

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Devi M, Kumar R, Bhatla N (2017) Secure and enhanced vehicular ad-hoc networks using DSR protocol and BFOA algorithm. Int J Comput Sci Eng 9(8):506–516

    Google Scholar 

  • Dhawale S, Deshmukh A, Dorle SS (2016) Heterogeneous approaches for cluster based routing protocol in vehicular ad-hoc network (VANET). Int J Comput Appl 134(12):201–213

    Google Scholar 

  • Dorigo M (1992) Learning and natural algorithms. PhD thesis, Politecnico di Milano, Milano

  • Dorronsoro B, Ruiz P, Danoy G, Pigné Y, Bouvry P (2014) Evolutionary algorithms for mobile ad hoc networks. Wiley Inc, Hoboken

    Book  MATH  Google Scholar 

  • Ebadinezhad S, Dereboylu Z, Ever E (2019) Clustering-based modified ant colony optimizer for internet of vehicles (CACOIOV). Sustainability 11(9):1–22

    Article  Google Scholar 

  • Eiza MH, Owens T, Ni Q, Shi Q (2015) Situation-aware QoS routing algorithm for vehicular ad hoc networks. IEEE Trans Veh Technol 64(12):5520–5535

    Article  Google Scholar 

  • Eltahir AA, Saeed RA (2018) V2V communication protocols in cloud-assisted vehicular networks. In: Jyoti Grover P, Vinod, CL (eds) Vehicular cloud computing for traffic management and systems, chapter 6. IGI Global, pp 125–150

  • Eurocom V (2007) VanetMobiSim. http://vanet.eurecom.fr/

  • Fahad M, Aadil F, Rehman Z, Khan S, Shah PA, Muhammad K, Lloret J, Wang H, Lee JW, Mehmood I (2018) Grey wolf optimization based clustering algorithm for vehicular ad-hoc networks. Comput Electr Eng 70:853–87

    Article  Google Scholar 

  • Fathian M, Jafarian-Moghaddam AR (2015) New clustering algorithms for vehicular ad-hoc network in a highway communication environment. Wirel Netw 21(8):2765–2780

    Article  Google Scholar 

  • Findik O (2015) Bull optimization algorithm based on genetic operators for continuous optimization problems. Turk J Electr Eng Comput Sci 23:2225–2239

    Article  Google Scholar 

  • Forrest S, Perelson AS, Allen L, Cherukuri R (1994) Self-nonself discrimination in a computer. In Proceedings of IEEE symposium on security and privacy, Oakland, pp 202–212

  • Frohnwieser A, Hopf R, Oberzaucher E (2013) Human walking behavior: the effect of pedestrian flow and personal space invasions on walking speed and direction. Hum Ethol Bull 28(3):20–28

    Google Scholar 

  • Gadkari MY, Sambre NB (2012) VANET: routing protocols, security issues and simulation tools. IOSR J Comput Eng 3(3):28–38

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  • Gao XZ, Govindasamy V, Xu H, Wang X, Zenger K (2015) Harmony search method: theory applications. Comput Intell Neurosci 2:1–10

    Article  Google Scholar 

  • Garg C, Wadhwa B (2016) G-AODV: a novel approach to improve AODV by using genetic algorithm in VANET. Int J Innov Res Comput Commun Eng 4(6):11328–11334

    Google Scholar 

  • Gautami R, Sedamkar RR, Patil H (2016) Hybridization of meta-heuristics for optimizing routing protocol in VANETs. Int J Eng Res Appl 6(2):24–28

    Google Scholar 

  • Gayathri S, Nithya S, Shanthini G, Janani R, Ramachandiran R, Shanmugam M, Kalaipriyan T, Raghav R, Rao GSN (2018) ACO-ECDSA based secure routing in VANET: a bio-inspired approach. Int J Pure Appl Math 119(14):395–406

    Google Scholar 

  • Gazdar T, Benslimane A, Rachedi A, Belghith A (2012) A trust-based architecture for managing certificates in vehicular Ad-hoc networks. In: Proceedings of the \(2{nd}\) international conference on communications and information technology, Hammamet. IEEE, pp 180–185

  • Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular ad-hoc networks: a survey. Wirel Pers Commun 73(3):885–912

    Article  Google Scholar 

  • Golden BL, Raghavan S, Wasil EA (2008) The vehicle routing problem: latest advances and new challenges. Springer, Washington DC

    Book  MATH  Google Scholar 

  • Gu L, Zeng D, Guo S, (2013). Vehicular cloud computing: a survey. In: 2013 IEEE Globecom workshops (GC Wkshps). Atlanta, GA, IEEE

  • Gunasekar M, Hinduja S (2014) Automatic Tuning Of OLSR Routing Protocol Using IWD in VANET. International Journal of Innovative Research in Computer and Communication Engineering 2(1):3455–3461

    Google Scholar 

  • Haas ZJ, Pearlman MR, Samar P (2002) The zone routing protocol (ZRP) for ad-hoc networks. https://tools.ietf.org/id/draft-ietf-manet-zone-zrp-04.txt

  • Hammoodi MR, Muniyand RC (2018) An improved harmony search algorithm for optimized link state routing protocol in vehicular ad hoc network. Int J Eng Technol 7(2):177–181

    Article  Google Scholar 

  • Harrabi S, Jaffar IB, Ghedira K (2016) Novel optimized routing scheme for VANETs. Proc Comput Sci 98:32–39

    Article  Google Scholar 

  • Head JD, Zerner MC (1985) Broyden-Fletcher-Goldfarb-Shanno. Chem Phys Lett 122(3):264–270

    Article  Google Scholar 

  • Hofmeyr SA, Forrest S (2000) Architecture for an artificial immune system. Evol Comput 8(4):443–473

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems, volume 4 of 10. University of Michigan Press, Ann Arbor

  • Hung W-Z (2012) Social behavior algorithm. In: International conference on fuzzy theory and its applications, Taichung. IEEE, pp 57–61

  • ITS (2011–2014). SUMO—Simulation of Urban MObility. http://sumo.dlr.de/

  • Jayachithra N, Sivakumar K, Chandrasekar DC (2017) Shortest path using ant colony optimization in VANET. Int J Eng Res Technol 5(17):1–6

    Google Scholar 

  • Jerbi M, Meraihi R, Senouci S-M, Ghamri-Doudane Y (2006) Gy-TAR: Improved greedy traffic aware routing protocol for vehicular Ad-hoc networks in city environments. In Proceedigs of the \(3{rd}\) international workshop on vehicular ad-hoc networks, Los Angeles. ACM, pp 88–89

  • Jiang M, Li J, Tay YC (1998) Cluster based routing protocol (CBRP) functional specification. https://tools.ietf.org/id/draft-ietf-manet-cbrp-spec-00.txt

  • Johnson DB, Maltz DA, Hu Y-C, Jetcheva JG (2001) The dynamic source routing protocol for mobile ad hoc networks. https://www.ietf.org/proceedings/50/I-D/manet-dsr-05.txt. Section 10 of RFC 2026

  • Joshi A, Sirola P, Purohit KC (2014) Comparative study of enhanced AODV routing protocols in VANET. Int J Comput Appl 96(18):22–27

    Google Scholar 

  • Joshua CJ, Duraisamy R, Varadarajan V (2019) A reputation based weighted clustering protocol in VANET: a multi-objective firefly approach. Mobile Netw Appl 24(4):1199–1209

    Article  Google Scholar 

  • Kalia N, Kaur N (2015) Intrusion detection system for VANET based on BFO algorithm. Int J Adv Res Comput Sci 6(5):185–189

    Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization (ABC). Technical Report 06, Erciyes University, Computer Engineering Department

  • Karimi R, Ithnin N, Razak SA, Najafzadeh S (2011) DTN routing protocols for VANETs: issues and approaches. Int J Comput Sci Issues 8(6):89–93

    Google Scholar 

  • Karp B, Kung HT (2000) GPSR: greedy perimeter stateless routing for wireless networks. In: Proceedings of the \(6{th}\) annual international conference on mobile computing and networking, Boston, Massachusetts. ACM, pp 243–254

  • Kaur N, Devgan M (2018) A hybrid routing protocol based on route optimization mechanism for VANET. Int J Comput Sci Eng 6(9):948–951

    Google Scholar 

  • Kaur P, Kaur U (2017) Various techniques for secure routing in VANETs: a review. Int J Comput Appl 161(5):1–4

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, volume 4, Perth. Association for Computing Machinery, pp 1942–1948

  • Khakpour S (2015) Cluster-based target tracking in vehicular ad-hoc networks. Master’s thesis, University of Ontario Institute of Technology, Oshawa

  • Khan I (2009) Performance evaluation of ad-hoc routing protocols for vehicular ad-hoc networks. Master’s thesis, Mohammad Ali Jinnah University

  • Khan MF, Aadil F, Maqsood M, Khan S, Bukhari BH (2018) An Efficient optimization technique for node clustering in VANETs using gray wolf optimization. KSII Trans Internet Inf Syst 12(9):4228–4247

    Google Scholar 

  • Khokhar RH, Noor RM, Ghafoor KZ, Ke C-H, Ngadi MA (2011) Fuzzy-assisted social-based routing for urban vehicular environments. In: EURASIP journal on wireless communications and networking, 2011

  • Kim DH, Abraham A, Cho JH (2007) A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf Sci 177(18):3918–3937

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Sci Mag 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  • Kittusamy V, Elhoseny M, Kathiresan S (2019) An enhanced whale optimization algorithm for vehicular communication networks. Wiley, Hoboken

    Google Scholar 

  • Krishnanand K, Ghose D (2006) Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Int J Multiagent Grid Syst 2:209–222

    Article  MATH  Google Scholar 

  • Lee KC, Cheng P-C, Weng J-T, Tung L-C, Gerla M (2008) VCLCR: a practical geographic routing protocol in urban scenarios. Technical Report 080009, University of California, Los Angeles

  • Lee U, Magistretti E, Gerla M, Bellavista P, Lió P, Lee K-W (2009) Bio-inspired multi-agent data harvesting in a proactive urban monitoring environment. Ad-hoc Netw 7(4):725–741

    Article  Google Scholar 

  • Lenando H, Alrfaay M (2018) EpSoc: social-based epidemic-based routing protocol in opportunistic mobile social network. Hindawi Mobile Information Systems, London

    Google Scholar 

  • Liang W, Li Z, Zhang H, Sun Y, Bie R (2014) Vehicular ad-hoc networks: architectures, research issues. In: Challenges and trends. Wireless algorithms, systems, applications, pp 102–113

  • Lin Y-W, Chen Y-S, Lee S-L (2010) Routing protocols in vehicular ad-hoc networks : a survey and future perspectives. J Inf Sci Eng 26(3):913–932

    Google Scholar 

  • Liu F, Wang Q, Gao X (2006) Survey of artificial immune system. In Proceedings of the \(1{st}\) international symposium on systems and control in aerospace and astronautics, Harbin. IEEE, pp 985–989

  • Lobiyal DK, Katti CP, Giri AK (2015) Parameter value optimization of ad-hoc on demand multipath distance vector routing using particle swarm optimization. Procedia Comput Sci 46:151–158

    Article  Google Scholar 

  • Lochert C, Hartenstein H, Tian J, Fubler H, Hermann D, Mauve M (2003) A routing strategy for vehicular ad hoc networks in city environments. In: Proceedings of the IEEE intelligent vehicles symposium (IVS), Columbus, Ohio, USA. IEEE, pp 156–161

  • Lochert C, Mauve M, Füßler H, Hartenstein H (2005) Geographic routing in city scenarios. ACM SIGMOBILE Mobile Comput Commun Rev 9(1):69–72

    Article  Google Scholar 

  • Lopez JGB (2010) A survey of geographic routing protocols for vehicular ad-hoc networks (VANETs). https://fr.slideshare.net/gabitobalderas/a-survey-of-geographic-routing-protocols-for-vehicular-ad-hoc-networks-vanets, New Mexico State University. Available via Technology

  • Lozano M, García-Martínez C (2010) Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report. Comput Oper Res 37(3):481–497

    Article  MathSciNet  MATH  Google Scholar 

  • Łukasik S, Żak S (2009) Firefly algorithm for continuous constrained optimization tasks. Computational collective intelligence. In Nguyen NT, Kowalczyk R, Chen SM (eds), Proceedigs of the \(1{st}\) international conference on computational collective intelligence. Semantic web, social networks and multiagent systems. Lecture Notes in Computer Science, vol 5796. Springer, Wrocław, pp 97–106

  • Mane U, Kulkarni SA (2013) QoS realization for routing protocol on VANETs using combinatorial optimization. In: Proceedings of the \(4{th}\) international conference on computing, communications and networking technologies, Tiruchengode. IEEE, pp 1083–1092

  • Marina MK, Das SR (2002) Ad-hoc on-demand multipath distance vector routing. ACM SIGMOBILE Mobile Comput Commun Rev 6(3):92–93

    Article  Google Scholar 

  • Matai R, Singh SP, Mittal ML (2010) Traveling salesman problem: an overview of applications, formulations, and solution approaches. INTECH Open Access Publ 4(2):201–213

    Google Scholar 

  • Mazhar N, Farooq M (2007a) BeeAIS: artificial immune system security for nature inspired, MANET routing protocol, BeeAdHoc. In de Castro LN, Zuben, FJV, Knidel H (eds), Proceedings of the \(6{th}\) international conference on artificial immune systems. Lecture notes in computer science book series volume 4628. Springer, Santos, pp 370–381

  • Mazhar N, Farooq M (2007b) Vulnerability Analysis and Security Framework (BeeSec) for Nature Inspired MANET Routing Protocols. In Proceedings of the \(9{th}\) annual conference on genetic and evolutionary computation, London. ACM, pp 102–109

  • Mazhar N, Farooq M (2011) A hybrid artificial immune system (AIS) model for power aware secure mobile ad-hoc networks (MANETs) routing protocols. Appl Soft Comput 11(8):5695–5714

    Article  Google Scholar 

  • Mehta K, Bajaj DPR, Bajaj DPR (2017) Nature inspired biological computing (NIBC) algorithm to provide quality of service in vehicular ad-hoc network (VANET). Int J Sci Eng Res 8(2):2456–2470

    Google Scholar 

  • Mehta K, Bajaj RP, Malik LG (2016) Fuzzy bacterial foraging optimization zone-based routing (FBFOZBR) protocol for VANET. In: International conference on ICT in business industry & government, Indore. IEEE

  • Mekki T, Jabri I, Rachedi A, Ben Jemaa M (2016) Vehicular cloud networks: challenges, architectures, and future directions. Vehic Commun 9:268–280

    Article  Google Scholar 

  • Melaouene N, Romadi R (2018) An enhanced routing algorithm using ant colony optimization and VANET infrastructure. MATEC Web Conf 259(6)

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mirjazaee N, Moghim N (2015) An opportunistic routing based on symmetrical traffic distribution in vehicular networks. Comput Electr Eng 47:1–12

    Article  Google Scholar 

  • Mo J, Huang B, Cheng X, Huang C, Wei F (2018) Improving security and stability of ad hoc on-demand distance vector with fuzzy neural network in vehicular ad hoc network. Int J Distrib Sensor Netw 14(10):1550147718806193

    Article  Google Scholar 

  • Montana D, Redi J (2005) Optimizing parameters of a mobile ad-hoc network protocol with a genetic algorithm. In Proceedings of the \(7{th}\) annual conference on genetic and evolutionary computation, Washington DC. ACM, pp 1993–1998

  • Mottahedi M, Jabbehdari S, Adabi S (2013) IBCAV: intelligent based clustering algorithm in VANET. Int J Comput Sci Issues 10(1):538–543

    Google Scholar 

  • Moustafa H, Senouci SM, Jerbi M (2009) Introduction to Vehicular Networks. In Moustafa H, Z. Y., editor, Vehicular Networks: Techniques, Standards, and Applications, chapter 1. Taylor & Francis Group, CRC Press, London, , Boca Raton, Florida

  • Naumov V, Gross TR (2007) Connectivity-aware routing (CAR) in vehicular ad-hoc networks. \(26{th}\) IEEE international conference on computer communications (IEEE INFOCOM 2007). Spain. IEEE, Barcelona, pp 1919–1927

  • Nebro AJ, Durillo JJ, García-Nieto J, Coello CAC, Luna F, Alba E (2009) SMPSO: A New PSO Metaheuristic for Multi-objective Optimization. In Proceedings of the (2009) IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making. Nashville, Tennessee, IEEE

  • Neshat M, Sepidnam G, Sargolzaei M, Toosi AN (2012) Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev 42(4):965–997

    Article  Google Scholar 

  • nsnam web pp (2018) The Network Simulator - ns-2. http://www.isi.edu/

  • Nzouonta-Domgang J (2009) Road-based procative routing protocols for vehicular networks. PhD thesis, New Jersey Institute of Technology

  • Omidvar A, Mohammadi K (2014) Particle swarm optimization in intelligent routing of delay-tolerant network routing. EURASIP J Wirel Commun Network 2014:1–2

    Article  Google Scholar 

  • Panda R, Naik MK (2012) A crossover bacterial foraging optimization algorithm. Appl Comput Intell Soft Comput. https://doi.org/10.1155/2012/907853

    Article  Google Scholar 

  • Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control (BFOA). Control Syst Mag 22(3):52–67

    Article  Google Scholar 

  • Patel MK, Kabat MR, Tripathy CR (2014) A hybrid ACO/PSO based algorithm for QoS multicast routing problem. Ain Shams Eng J 5(1):113–120

    Article  Google Scholar 

  • Patel NJ, Jhaveri RH (2015) Trust based approaches for secure routing in VANET: a survey. Procedia Comput Sci 45:592–601

    Article  Google Scholar 

  • Perkins CE, Bhagwat P (1994) Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Comput Commun Rev 24(4):234–244

    Article  Google Scholar 

  • Perkins CE, Royer EM (1999) Ad-hoc On-Demand Distance Vector Routing. In Proceedings of the \(2{nd}\) IEEE workshop on mobile computing systems and applications, New Orleans, Louisiana

  • Poonia RC, Raja L (2018) On-demand routing protocols for vehicular cloud computing. In Jyoti Grover P, Vinod, CL (eds) Vehicular cloud computing for traffic management and systems, chapter 7. IGI Global, pp 151–177

  • Punia S, Patial RK (2016) Clustering based routing protocols in vehicular ad-hoc networks: a review. Indian J Sci Technol 9(47):201–213

    Article  Google Scholar 

  • Qin Y, Huang D, Zhang X (2012) Vehicloud: Cloud computing facilitating routing in vehicular networks. In: 11th International conference on trust, security and privacy in computing and communications. IEEE

  • Qureshi KN, Abdullah H, Ullah F, Anwar RW (2015) Vehicular ad-hoc networks routing protocols: survey. Sci Int 27(5):4507–4525

    Google Scholar 

  • Ramakrishnan DB, Sreedivya SR, Selvi M (2015) Adaptive routing protocol based on cuckoo search algorithm (ARP-CS) for secured vehicular ad hoc network (VANET). Int J Comput Netw Appl 2(4):173–178

    Google Scholar 

  • Ramezani F, Lotfi S (2013) Social-based algorithm (SBA). Appl Soft Comput 13(5):2837–2856

    Article  Google Scholar 

  • Rana H, Thulasiraman P, Thulasiram RK (2013) MAZACORNET: mobility aware zone based ant colony optimization routing for VANET. In: IEEE congress on evolutionary computation, pp 2948–2955, Cancun

  • Rewadkar D, Doye D (2017) FGWO-TAR: fractional glowworm swarm optimization for traffic aware routing in urban VANET. Int J Commun Syst 2(5):1–22

    Google Scholar 

  • Rewadkar D, Doye D (2018) Adaptive-ARW: adaptive autoregressive whale optimization algorithm for traffic-aware routing in urban VANET. Int J Comput Sci Eng 6(3):40–49

    Google Scholar 

  • Sachdev A, Mehta K, Malik L (2016) Design of protocol for cluster based routing in VANET using fire fly algorithm. Int J Sci Res Develop 4(2):1565–1569

    Google Scholar 

  • Saggi MK, Kaur R (2015) Isolation of Sybil attack in VANET using neighboring information. In: Proceedings of IEEE international advance computing conference, Banglore

  • Sahota RS, lal M (2016) Performance tuning of OLSR and GRP routing protocols in MANET’s using OPNET. Int Res J Eng Technol 3(7):1635–1639

    Google Scholar 

  • Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  • Sari RF (2017) Bioinspired algorithms for internet of things network. url: https://ieeexplore.ieee.org/document/8257662

  • Sataraddi MJ, Kakkasageri MS, Kori GS, Patil RV (2017) Intelligent routing for hybrid communication in VANETs. In \(7{th}\) international advanced computing conference (IACC 2017), Hyderabad. IEEE

  • Sayad L, Bouallouche-Medjkoune L, Aissani D (2016) IWDRP: an intelligent water drops inspired routing protocol for mobile ad-hoc networks. Wireless Pers Commun 94(4):2561–2581

    Article  Google Scholar 

  • Schoeneich RO, Surgiewicz R (2016) SocialRouting: the social-based routing algorithm for delay tolerant networks. Int J Electr Telecommun 62(2):167–172

    Article  Google Scholar 

  • Shah YA, Habib HA, Aadil F, Khan MF, Maqsood M, Nawaz T, Pal AK (2018) Camonet: moth-flame optimization (MFO) based clustering algorithm for VANETs. IEEE Access 6:48611–48624

    Article  Google Scholar 

  • Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J BioInspired Comput 1(1–2):71–79

    Article  Google Scholar 

  • Sharavanan S, Balajee RM (2016) Junction based urban scenario high speed node detection (JBUS-HSND) and alerting system on VANET. In: International conference on recent trends in information technology, Chennai. IEEE

  • Sharma S, Giri AK, Singhal N (2014) Finding optimal configuration of DSDV using particle swarm optimization. Int J Comput Appl 104(4):27–31

    Google Scholar 

  • Sharma S, Kad S (2018) A review on social based routing schemes in vanets. Int J Eng Tech Res 8(12):14–18

    Google Scholar 

  • Shi Y (2011) Brain storm optimization algorithm. In Tan Y, Shi Y, Chai Y, Wang G (eds), Proceedings of the 2nd international conference on advances in swarm intelligence. Lecture Notes in Computer Science, vol 6728. Springer, pp 303–309

  • Shrivastava N, Motwani A (2014) A modification to DSR using multipath technique. Int J Comput Appl 92(11):24–28

    Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Soares VNGJ, Rodrigues JJPC, Farahmand F (2014) GeoSpray: a geographic routing protocol for vehicular delay-tolerant networks. Inf Fus 15:102–113

    Article  Google Scholar 

  • Sonia Kaur (2016) Proficient and enhance the Mobile ad-hoc network using routing protocol and EBFOA (Enhanced Bacteria Foraging Optimization Algorithm). Int J Mod Comput Sci 4(6):88–94

    Google Scholar 

  • Sood M, Kanwar S (2014) Clustering in MANET and VANET: a survey. In: International conference on circuits, systems, communication and information technology applications, Mumbai. IEEE, pp 375–380

  • Spyropoulos T, Psounis K, Raghavendra CS (2004) Single-copy routing in intermittently connected mobile networks. In: Proceedings of the (2004) 1st annual IEEE communications society conference on sensor and ad-hoc communications and networks. Santa Clara, California

  • Srinidhi N, Kumar SD, Venugopal K (2018) Network optimizations in the internet of things: a review. Eng Sci Technol Int J 22(1):1–21

    Google Scholar 

  • Tabar AK, Farazkish R (2019) A new method for routing optimization in vehicular ad hoc networks (VANETs). Signal Process Renew Energy 37–45

  • Talbi E (2009) Single solution based metaheuristics. In: Talbi El-Ghazali (ed) Metaheuristics: from design to implementation. Wiley, New York, pp 87–189

    Chapter  MATH  Google Scholar 

  • Tamizhselvi A, Banu RSDW (2014) Hybrid optimization algorithm for geographic routing in VANET. J Theor Appl Inf Technol 65(2):320–326

    Google Scholar 

  • Teodorović D (2009) Bee colony optimization (BCO). In: Lim CP, Jain LC, Dehuri S (eds) Innovations in swarm intelligence, 1st edn. Springer, Heidelberg, pp 39–60

    Chapter  Google Scholar 

  • Thenmozhi R, Govindarajan S (2017) A comparative study of collision avoidance techniques in VANET. Int J Pure Appl Math 117(16):19–26

    Google Scholar 

  • Thorup RE (2007) Implementing and evaluating the DYMO routing protocol. Master’s thesis, Aarhus University, Aarhus, Danemark

  • Tian D, Zheng K, Zhou J, Duan X, Wang Y, Sheng Z, Ni Q (2018) A microbial inspired routing protocol for VANETs. IEEE Internet-of-Things J 5(4):2293–2903

    Article  Google Scholar 

  • Tilahun SL, Ngnotchouye JMT (2017) Firefly algorithm for discrete optimization problems: a survey. KSCE J Civ Eng 21(2):535–545

    Article  Google Scholar 

  • Togou MA, Hafid A, Khoukhi L (2016) SCRP: stable CDS-based routing protocol for urban vehicular ad hoc networks. IEEE Trans Intell Transp Syst 17(5):1298–1307

    Article  Google Scholar 

  • Toutouh J, Alba E (2012a) Green OLSR in VANETs with differential evolution. In: Proceedings of the \(14{th}\) annual conference companion on genetic and evolutionary computation (GECCO ’12), Philadelphia. ACM, pp 11–18

  • Toutouh J, Alba E (2012b) Parallel swarm intelligence for VANETs optimization. In: P2P, parallel, grid, cloud and internet computing

  • Toutouh J, Alba E (2015) Metaheuristics for energy-efficient data routing in vehicular networks. Int J Metaheuristics 4(1):27–56

    Article  Google Scholar 

  • Toutouh J, Alba E (2017) Parallel multi-objective metaheuristics for smart communications in vehicular networks. Soft Comput 21(8):1949–1961

    Article  Google Scholar 

  • Toutouh J, Nesmachnow S, Alba E (2013) Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm. Cluster Comput 16(3):435–450

    Article  Google Scholar 

  • Vieira ASS, Filho JG, Jr, JC, Patel A (2013) VDTN-ToD: routing protocol VANET/DTN based on trend of delivery. In: Proceedings of the 9th advanced international conference on telecommunications (AICT 2013), Rome, pp 135–141

  • Wagh MB, Gomathi DN (2018a) Water wave optimization-based routing protocol for vehicular adhoc networks. Int J Model Simulat Sci Comput 9(5):1850047

    Article  Google Scholar 

  • Wagh MB, Gomathi N (2018b) Route discovery for vehicular ad hoc networks using modified lion algorithm. Alex Eng J 57(4):3075–3087

    Article  Google Scholar 

  • Wang G-G, Deb S, Coelho L (2015a) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspired Comput 12:1–22

    Article  Google Scholar 

  • Wang G-G, Deb S, dos S Coelho L (2015b) Elephant herding optimization. In Proceedigs of the 3rd international symposium on computational and business intelligence, Bali. IEEE, pp 1–5

  • Wang M, Zhang Y, Li C, Wang X, Zhu L (2014) A survey on intersection-based routing protocols in city scenario of VANETs. In international conference on connected vehicles and expo, Vienna. IEEE, pp 821–826

  • Whaiduzzaman M, Sookhak M, Gani A, Buyya R (2014) A survey on vehicular cloud computing. J Netw Comput Appl 40:325–344

    Article  Google Scholar 

  • Wille ECG, Monego HID, Coutinho BV, Basilio GG (2016) Routing protocols for VANETs: an approach based on genetic algorithms. KSII Trans Internet Inf Syst 10(2):542–558

    Google Scholar 

  • Woeginger GJ (2003) Exact Algorithms for NP-hard problems: a survey. In: Jünger M, Reinelt G, Rinaldi G (eds) Combinatorial optimization—Eureka, you shrink!. Springer, New York. Papers Dedicated to Jack Edmonds \(5{th}\) International Workshop Aussois, France, pp 185–207

  • Wu B, Qian C, Ni W, Fan S (2012) The improvement of glowworm swarm optimization for continuous optimization problems. Expert Syst Appl 39(7):6335–6342

    Article  Google Scholar 

  • Xiong-fa M, Ling L (2016) An enhanced bacterial foraging optimization with adaptive elimination-dispersal probability and PSO strategy. In: Proceedings of the \(12{th}\) international conference on natural computation and \(13{th}\) fuzzy systems and knowledge discovery, Changsha. IEEE

  • Yadav H, Lithore U, Agrawal N (2017) An enhancement of whale optimization algorithm using ANN for routing optimization in Ad-hoc network. Int J Adv Technol Eng Explor 4(36):161–167

    Article  Google Scholar 

  • Yahiabadi SR, Barekatain B (2019) Raahemifar K (2019) TIHOO: an enhanced hybrid routing protocol in vehicular ad-hoc networks. EURASIP J Wirel Commun Netw 192:1–19

    Google Scholar 

  • Yang X-S (2009) Firefly algorithm for multimodal optimization. In: Watanabe O, Zeugmann T (eds), Proceedings of the \(5{th}\) international symposium on stochastic algorithms, foundations and applications. Lecture notes in computer science, vol 5792. Springer, Sapporo, pp 169–178

  • Yang X-S (2012) Swarm-based metaheuristic algorithms and no-free-lunch theorems. In: Parpinelli R (ed) Theory and new applications of swarm intelligence. IntechOpen, London, pp 1–16

    Google Scholar 

  • Yang X-S (2014) Firefly algorithms. In: Yang XS (ed) Nature-inspired optimization algorithms, chapter 8. Elsevier, Amsterdam, pp 111–127

    Chapter  Google Scholar 

  • Yang X-S, Deb S (2009) Cuckoo search via levy flights. In: World congress on nature & biologically inspired computing, Coimbatore. IEEE, pp 210–214

  • Yarinezhad R, Sarab A (2019) A new routing algorithm for vehicular ad-hoc networks based on glowworm swarm optimization algorithm. J AI Data Min 7(1):69–76

    Google Scholar 

  • Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36

    Google Scholar 

  • Zhang G, Min Wu WD, Huang X (2018) Genetic algorithm based QoS perception routing protocol for VANETs. Hindawi Wirel Commun Mobile Comput 2018:1–10

    Google Scholar 

  • Zhang H, Wang X, Memarmoshrefi P, Hogrefe D (2017) A survey of ant colony optimization based routing protocols for mobile ad-hoc networks. IEEE Access 5:24139–24161

    Article  Google Scholar 

  • Zhao J, Cao G (2008) VADD: vehicle-assisted data delivery in vehicular ad-hoc networks. IEEE Trans Veh Technol 57(3):1910–1922

    Article  Google Scholar 

  • Zheng J, Chen Y, Zhang W (2010) A survey of artificial immune applications. Artif Intell Rev 34(1):19–34

    Article  Google Scholar 

  • Zheng Y-J (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Zhong Y, Lin J, Ning J, Lin X (2011) Hybrid artificial bee colony algorithm with chemotaxis behavior of bacterial foraging optimization algorithm. In: Proceedings of the \(7{th}\) international conference on natural computation, Shanghai. IEEE

  • Zhou T (2015) Data collection, dissemination, and security in vehicular ad-hoc network. PhD thesis, Duke University

  • Zukarnain ZA, Al-Kharasani NM, Subramaniam SK, Hanapi ZM (2014) Optimal configuration for urban VANET routing using particle swarm optimization. In: International conference on artificial intelligence and computer science, Bandung

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Azzoug.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzoug, Y., Boukra, A. Bio-inspired VANET routing optimization: an overview. Artif Intell Rev 54, 1005–1062 (2021). https://doi.org/10.1007/s10462-020-09868-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09868-9

Keywords

Navigation