Skip to main content
Log in

Natural Communities of Microalgae and Cyanobacteria from Eutrophicated Waters as Potential Co-substrates for Small-scale Biogas Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the biogas potential of biomass produced by microbiotic communities developed under natural conditions in freshwater systems such as ponds incorporated into agricultural landscapes. Natural communities of microalgae were collected from a small eutrophicated pond where dominant species were euglenoids (Lepocinclis species). Cyanobacterial communities dominated by Lyngbya species were taken from a domestic aquarium and cultivated under makeshift conditions. Experiments were done using dairy cow manure (DCM) for codigestion with natural communities of microalgae (MDM) and cyanobacteria (CDM) and conducted during 42 days in thermophilic regime. The total biogas yields were 421.40 and 383.34 mL/g volatile solids (VS), while the average methane contents were 63.97 and 64.06% for MDM and CDM, respectively. Our results indicate that the natural communities of microalgae and cyanobacteria used in this study possess the potential for biogas production, which is, in comparison with particular algal and cyanobacterial strains cultivated under strictly controlled cultivation conditions, more promising. Therefore, this study aims to motivate further investigations into the diverse natural communities of microalgae and cyanobacteria and pretreatments that are environmentally friendly and cost-effective and will eventually enhance small-scale biogas production on agricultural farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DCM:

Dairy cow manure

MDM:

Microalgae and DCM mixture

CDM:

Cyanobacteria and DCM mixture

TS:

Total solids

VS:

Volatile solids

TOC:

Total organic carbon

TN:

Total extractable nitrogen

GC:

Gas chromatograph

SD:

Standard deviation

References

  1. Milledge, J. J., Nielsen, B. V., Maneein, S., & Harvey, P. J. (2019). A brief review of anaerobic digestion of algae for bioenergy. Energies, 12(6), 1166. https://doi.org/10.3390/en12061166.

    Article  CAS  Google Scholar 

  2. Milledge, J. J., & Harvey, P. J. (2016). Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. Journal of Chemical Technology and Biotechnology, 91(8), 2221–2234. https://doi.org/10.1002/jctb.5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Córdova, O., Passos, F., & Chamy, R. (2019). Enzymatic pretreatment of microalgae: cell wall disruption, biomass solubilisation and methane yield increase. Applied Biochemistry and Biotechnology, 189(3), 787–797. https://doi.org/10.1007/s12010-019-03044-8.

    Article  CAS  PubMed  Google Scholar 

  4. Luo, T., Zhu, N., Shen, F., Long, E., Long, Y., Chen, X., & Mei, Z. (2016). A case study assessment of the suitability of small-scale biogas plants to the dispersed agricultural structure of China. Waste and Biomass Valorization, 7(5), 1131–1139. https://doi.org/10.1007/s12649-016-9487-3.

    Article  CAS  Google Scholar 

  5. Hjort-Gregersen, K. (2015). Market overview micro scale digesters, BioEnergy Farm II publication. Denmark: AgroTech A/S.

    Google Scholar 

  6. Mudimu, O., Rybalka, N., Bauersachs, T., Born, J., Friedl, T., & Schulz, R. (2014). Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal effects. Metabolites, 4(2), 373–393. https://doi.org/10.3390/metabo4020373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bohutskyi, P., & Bouwer, E. (2013). Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In J. W. Lee (Ed.), Advanced biofuels and bioproducts. New York: Springer Science Business Media.

    Google Scholar 

  8. Cavinato, C., Ugurlu, A., de Godos, I., Kendir, E., & Gonzalez-Fernandez, C. (2017). Biogas production from microalgae, in Microalgae-based biofuels and bioproducts: from feedstock cultivation to end-products (Gonzalez-Fernandez, C., Muñoz, R., eds.), Elsevier, pp. 155–182. https://doi.org/10.1016/B978-0-08-101023-5.00007-8

  9. Wu, N., Moreira, C.M., Zhang, Y., Doan, N., Yang, S., Phlips, E.J., Svoronos, S.A., & Pullammanappallil, P.C. (2019). Techno-economic analysis of biogas production from microalgae through anaerobic digestion, in Anaerobic digestion (Banu, R. and Kannah, Y.R., eds.), IntechOpen.

  10. Tiwari, A. & Marella, T.K. (2020). Algal biomass: potential renewable feedstock for biofuel production, in substrate analysis for effective biofuels production (Srivastava, N., Srivastava, M., Mishra. P.K., Gupta, V.K., eds.), Springer.

  11. Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88(10), 3454–3463. https://doi.org/10.1016/j.apenergy.2010.10.020.

    Article  CAS  Google Scholar 

  12. Dębowski, M., Szwaja, S., Zieliński, M., Kisielewska, M., & Stańczyk-Mazanek, E. (2017). The influence of anaerobic digestion effluents (ADEs) used as the nutrient sources for Chlorella sp. cultivation on fermentative biogas production. Waste and Biomass Valorization, 8(4), 1153–1161. https://doi.org/10.1007/s12649-016-9667-1.

    Article  CAS  Google Scholar 

  13. Duan, N., Ran, X., Li, R., Kougias, P. G., Zhang, Y., Lin, C., & Liu, H. (2018). Performance evaluation of mesophilic anaerobic digestion of chicken manure with algal digestate. Energies, 11(7), 1829. https://doi.org/10.3390/en11071829.

    Article  CAS  Google Scholar 

  14. Ramos-Suárez, J. L., Martínez, A., & Carreras, N. (2014). Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production, Energy Convers. Manag., 88, 1263–1270. https://doi.org/10.1016/j.enconman.2014.02.064.

    Article  CAS  Google Scholar 

  15. Marques, A. L., Pinto, F. P., Araújo, O. Q. F., & Cammarota, M. C. (2018). Assessment of methods to pretreat microalgal biomass for enhanced biogas production. Journal of Sustainable Development of Energy, Water environ. syst. 6, 394-404. https://doi.org/10.13044/j.sdewes.d5.0193.

  16. Cirne, D. G., Paloumet, X., Bjornsson, L., Alves, M. M., & Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste - effects of lipid concentration, Renew. Energy, 32(6), 965–975. https://doi.org/10.1016/j.renene.2006.04.003.

    Article  CAS  Google Scholar 

  17. Mussgnug, J. H., Klassen, V., Schlȕter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56. https://doi.org/10.1016/j.jbiotec.2010.07.030.

    Article  CAS  PubMed  Google Scholar 

  18. Mendoza, Á., Morales, V., Sánchez-Bayo, A., Rodríguez-Escudero, R., González-Fernández, C., Bautista, L. F., & Vicente, G. (2020). The effect of the lipid extraction method used in biodiesel production on the integrated recovery of biodiesel and biogas from Nannochloropsis gaditana, Isochrysis galbana and Arthrospira platensis. Biochemical Engineering Journal, 154, 107428. https://doi.org/10.1016/j.bej.2019.107428.

    Article  CAS  Google Scholar 

  19. Wilkie, A. C. (2005). Anaerobic digestion: biology and benefits, in Dairy manure management: treatment, handling, and community relations (pp. 63–72). Ithaca: Cornell University.

    Google Scholar 

  20. Hindak, F., Cyrus, Z., Marvan, P., Javornicky, P., Komarek, J., Ettl, H., Rosa, K., Sladečkova, A., Popovsky, J., Punčocharova, M., & Lhotsky, O. (1978). Slatkovodne Riasy. Bratislava: Slovenske Pedagogicke Nakladelstvo.

    Google Scholar 

  21. Anagostidis, K., & Komárek, J. (1988). Modern approach to the classification system of cyanophytes, 3: Oscillatories. Algological Studies/Archiv für Hydrobiologie, Suppl, 80, 327–472.

    Google Scholar 

  22. Utermöhl, H. (1958) Zur Vervollkommnung der Quantitativen Phytoplankton - Methodik Mitt IntVerein Theor Angew Limnol 9, 1-38.

  23. APHA. (2005). Standard methods for the examination of water and wastewater. Washington: APHA.

    Google Scholar 

  24. ISO 14235 (1998) Soil quality – determination of organic carbon by sulfochromic oxidation

  25. ISO 6974-4:2001 Natural gas - determination of composition with defined uncertainty by gas chromatography – part 4: determination of nitrogen, carbon dioxide and hydrocarbons C1 up to C5 and C6+ for a laboratory and on-line process application using two columns (ISO 6974-4:2000). https://www.iso.org/obp/ui/#iso:std:iso:6974:-4:ed-1:v1:en

  26. Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge: Cambridge University Press.

  27. Borics, G., Tóthmérész, B., Lukács, B. A., & Várbíró, G. (2012). Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia, 698(1), 251–262. https://doi.org/10.1007/s10750-012-1129-6.

    Article  Google Scholar 

  28. Stević, F., Mihaljević, M., & Špoljarić, D. (2013). Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia, 709(1), 143–158. https://doi.org/10.1007/s10750-013-1444-6.

    Article  CAS  Google Scholar 

  29. Poniewozik, M., & Juráň, J. (2018). Extremely high diversity of Euglenophytes in a small pond in eastern Poland, Plant Ecol. Evol., 151(1), 18–34. https://doi.org/10.5091/plecevo.2018.1308.

    Article  Google Scholar 

  30. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  31. Wilkie, A. C., Edmundson, S. J., & Duncan, J. G. (2011). Indigenous algae for local bioresource production: phycoprospecting, Energy Sustain. Dev., 15(4), 365–371. https://doi.org/10.1016/j.esd.2011.07.010.

    Article  Google Scholar 

  32. Nekano, Y., Urade, R., & Kitaoka, S. (1987). Isolation, purification and characterization of the pellicle of Euglena gracilisz. Journal of Biochemistry, 102(5), 1053–1063. https://doi.org/10.1093/oxfordjournals.jbchem.a122143.

    Article  Google Scholar 

  33. Hudon, C., De Sève, M., & Cattaneo, A. (2014). Increasing occurrence of the benthic filamentous cyanobacterium Lyngbya wollei: a symptom of freshwater ecosystem degradation. Freshwater Science, 33(2), 606–618. https://doi.org/10.1086/675932.

    Article  Google Scholar 

  34. Min, M., Hu, B., Mohr, M. J., Shi, A., Ding, J., Sun, Y., Jiang, Y., Fu, Z., Griffith, R., Hussain, F., Mu, D., Nie, Y., Chen, P., Zhou, W., & Ruan, R. (2014). Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment—a case study. Applied Biochemistry and Biotechnology, 172(3), 1390–1406. https://doi.org/10.1007/s12010-013-0603-6.

    Article  CAS  PubMed  Google Scholar 

  35. Sun, Z. L., Sun, L. Q., & Chen, G. Z. (2019). Microalgal cultivation and nutrient removal from digested piggery wastewater in a thin-film flat plate photobioreactor. Applied Biochemistry and Biotechnology, 187(4), 1488–1501. https://doi.org/10.1007/s12010-018-2889-x.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, W., Hu, B., Li, Y., Min, M., Mohr, M., Du, Z., Chen, P., & Ruan, R. (2012). Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Applied Biochemistry and Biotechnology, 168(2), 348–363. https://doi.org/10.1007/s12010-012-9779-4.

    Article  CAS  PubMed  Google Scholar 

  37. Carr, N. G., & Whitton, B. A. (1973). The biology of blue-green algae. Blackwell Scientific Publications.

  38. Sharathchandra, K., & Rajashekhar, M. (2011). Total lipid and fatty acid composition in some freshwater cyanobacteria. Journal Algal Biomass Utilization, 2, 83–97.

    Google Scholar 

  39. Kushwaha, D., Upadhyay, S. N., & Mishra, P. K. (2017). Growth of cyanobacteria: optimization for increased carbohydrate content. Applied Biochemistry and Biotechnology, 184(4), 1247–1262. https://doi.org/10.1007/s12010-017-2620-3.

    Article  CAS  PubMed  Google Scholar 

  40. Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500. https://doi.org/10.1016/j.rser.2014.03.041.

    Article  CAS  Google Scholar 

  41. Conforti, V. T., Ruiz, L. B., & Leonardi, P. I. (2017). Ultrastructural alterations in Lepocinclis acus (Euglenophyta) induced by medium with high organic matter content. Frontiers in Ecology and Evolution, 5, 1–8. https://doi.org/10.3389/fevo.2017.00141.

    Article  Google Scholar 

  42. Gonzalez-Fernandez, C., Sialve, B., & Molinuevo-Salces, B. (2015). Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresource Technology, 198, 896–906. https://doi.org/10.1016/j.biortech.2015.09.095.

    Article  CAS  PubMed  Google Scholar 

  43. Kovačić, Đ., Kralik, D., Jovičić, D., Rupčić, S., Popović, B., & Tišma, M. (2018). Thermal pretreatment of harvest residues and their use in anaerobic codigestion with dairy cow manure. Applied Biochemistry and Biotechnology, 184(2), 471–483. https://doi.org/10.1007/s12010-017-2559-4.

    Article  CAS  PubMed  Google Scholar 

  44. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021.

    Article  CAS  PubMed  Google Scholar 

  45. Keramati, M., & Beiki, H. (2017). The effect of pH adjustment together with different substrate to inoculum ratios on biogas production from sugar beet wastes in an anaerobic digester. Journal of Energy Management Technololgy, 1, 6–11 https://doi.org/10.22109/jemt.2017.87623.1016.

    Google Scholar 

  46. Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038.

    Article  CAS  Google Scholar 

  47. Liu, C., Yuan, X., Zeng, G., Li, W., & Li, J. (2008). Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 99(4), 882–888. https://doi.org/10.1016/j.biortech.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  48. Yen, H. W., & Brune, D. E. (2007). Anaerobic codigestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(1), 130–134. https://doi.org/10.1016/j.biortech.2005.11.010.

    Article  CAS  PubMed  Google Scholar 

  49. Ward, A. J. D., Lewis, M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: a review. Algal Research, 5, 204–214. https://doi.org/10.1016/j.algal.2014.02.001.

    Article  Google Scholar 

  50. Uggetti, E., Passos, F., Solé, M., Garfí, M., & Ferrer, I. (2017). Recent achievements in the production of biogas from microalgae. Waste and Biomass Valorization, 8(1), 129–139. https://doi.org/10.1007/s12649-016-9604-3.

    Article  CAS  Google Scholar 

  51. Dębowski, M., Zieliński, M., Kisielewska, M., & Krzemieniewski, M. (2017). Anaerobic codigestion of the energy crop Sida Hermaphrodita and microalgae biomass for enhanced biogas production. International Journal of Environmental Research, 11(3), 243–250. https://doi.org/10.1007/s41742-017-0024-4.

    Article  CAS  Google Scholar 

  52. Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409–416. https://doi.org/10.1016/j.biotechadv.2009.03.001.

    Article  CAS  PubMed  Google Scholar 

  53. Thorin, E., Olsson, J., Schwede, S., & Nehrenheim, E. (2018). Codigestion of sewage sludge and microalgae – biogas production Investigations. Applied Energy, 227, 64–72. https://doi.org/10.1016/j.apenergy.2017.08.085.

    Article  CAS  Google Scholar 

  54. Bohutskyi, P., Keller, T. A., Phan, D., Parris, M. L., Li, M., Richardson, L., & Kopachevsky, A. M. (2019). Codigestion of wastewater-grown filamentous algae with sewage sludge improves biomethane production and energy balance compared to thermal, chemical, or thermochemical pretreatments. Frontiers in Energy Research, 7, 47. https://doi.org/10.3389/fenrg.2019.00047.

    Article  Google Scholar 

Download references

Funding

This work was funded through institutional financial support from the Faculty of Agrobiotechnical Sciences and the Department of Biology, University of Josip Juraj Strossmayer in Osijek, Croatia.

Author information

Authors and Affiliations

Authors

Contributions

The concept and design of the study, analysis and interpretation of data, and manuscript writing were done by Deže, D., Mihaljević, M., Kralik, D., and Kovačić, Đ. supported by Jovičić, D. in experiment realization and calculations of the given results.

Corresponding author

Correspondence to Melita Mihaljević.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deže, D., Mihaljević, M., Kovačić, Đ. et al. Natural Communities of Microalgae and Cyanobacteria from Eutrophicated Waters as Potential Co-substrates for Small-scale Biogas Production. Appl Biochem Biotechnol 192, 1016–1028 (2020). https://doi.org/10.1007/s12010-020-03382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03382-y

Keywords

Navigation