Skip to main content
Log in

HT-AWGM: a hierarchical Tucker–adaptive wavelet Galerkin method for high-dimensional elliptic problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the construction, analysis, and realization of a numerical method to approximate the solution of high-dimensional elliptic partial differential equations. We propose a new combination of an adaptive wavelet Galerkin method (AWGM) and the well-known hierarchical tensor (HT) format. The arising HT-AWGM is adaptive both in the wavelet representation of the low-dimensional factors and in the tensor rank of the HT representation. The point of departure is an adaptive wavelet method for the HT format using approximate Richardson iterations and an AWGM for elliptic problems. HT-AWGM performs a sequence of Galerkin solves based upon a truncated preconditioned conjugate gradient (PCG) algorithm in combination with a tensor-based preconditioner. Our analysis starts by showing convergence of the truncated conjugate gradient method. The next step is to add routines realizing the adaptive refinement. The resulting HT-AWGM is analyzed concerning convergence and complexity. We show that the performance of the scheme asymptotically depends only on the desired tolerance with convergence rates depending on the Besov regularity of low-dimensional quantities and the low-rank tensor structure of the solution. The complexity in the ranks is algebraic with powers of four stemming from the complexity of the tensor truncation. Numerical experiments show the quantitative performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmayr, M., Dahmen, W.: Adaptive near-optimal rank tensor approximation for high-dimensional operator equations. Found Comput. Math. 15(4), 839–898 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Bachmayr, M., Dahmen, W.: Adaptive low-rank methods for problems on Sobolev spaces with error control in L2. ESAIM Math. Model. Numer Anal. 50(4), 1107–1136 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bachmayr, M., Dahmen, W.: Adaptive low-rank methods: problems on Sobolev spaces. SIAM J. Numer. Anal. 54(2), 744–796 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bachmayr, M., Schneider, R.: Iterative methods based on soft thresholding of hierarchical tensors. Found Comput. Math. 17(4), 1037–1083 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. Found. Comput. Math., pp 1–50 (2016)

  6. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numer Linear Algebra Appl. 20(1), 27–43 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Billaud-Friess, M., Nouy, A., Zahm, O.: A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems. ESAIM: Mathematical Modelling and Numerical Analysis 48 (6), 1777–1806 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp. 70(233), 27–75 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math. 2(3), 203–245 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Dahmen, W., DeVore, R., Grasedyck, L., Süli, E.: Tensor-sparsity of solutions to high-dimensional elliptic partial differential equations. Found Comput. Math. 16(4), 813–874 (2016)

    MathSciNet  MATH  Google Scholar 

  11. D’Aspremont, A.: Smooth optimization with approximate gradient. SIAM Journal on Optimization 19, 1171–1183 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex optimization with inexact oracle. Mathematical Programming 146(1-2), 37–75 (2013)

    MathSciNet  MATH  Google Scholar 

  13. DeVore, R.A.: Nonlinear approximation. In: Acta Numerica. Cambridge Univ. Press, Cambridge, 1998, vol. 7, pp 51–150 (1998)

  14. Dolgov, S., Khoromskij, B.: Simultaneous state-time approximation of the chemical master equation using tensor product formats. Numer. Linear Algebra Appl. 22(2), 197–219 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. SIAM Journal on Scientific Computing 36(5), A2248–A2271 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Fischer, B.: Polynomial Based Iteration Methods for Symmetric Linear Systems. Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, Chichester (1996). B.G. Teubner, Stuttgart

    Google Scholar 

  17. Gantumur, T., Harbrecht, H., Stevenson, R. : An optimal adaptive wavelet method without coarsening of the iterands. Math Comp. 76 (258), 615–629 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Hackbusch, W.: Iterative Lösung Groß Er Schwachbesetzter Gleichungssysteme, vol. 69. B. G. Teubner, Stuttgart (1991)

    Google Scholar 

  19. Hackbusch, W., calculus, numerical tensor: Tensor Spaces Vol. 42 of Springer Series in Computational Mathematics. Springer, Heidelberg (2012)

    Google Scholar 

  20. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J Fourier Anal. Appl. 15(5), 706–722 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in the tensor train format. SIAM J. Sci. Comput. 34(2), A683–A713 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Jarre, F., Stoer, J.: Optimierung. Springer, Berlin (2004)

    MATH  Google Scholar 

  23. Kestler, S.: On the Adaptive Tensor Product Wavelet Galerkin Method with Applications in Finance. PhD thesis, Ulm University (2013)

  24. Khoromskij, B.N.: Tensor-structured preconditioners and approximate inverse of elliptic operators in ℝd. Constr. Approx. 30(3), 599–620 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Khoromskij, B.N., Oseledets, I.: Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs. Comput. Methods Appl Math. 10(4), 376–394 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, pp 409–542. Springer, Berlin (2009)

  29. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Oseledets, I.V., Dolgov, S.V.: Solution of linear systems and matrix inversion in the TT-format. SIAM J. Sci. Comput. 34(5), A2718–A2739 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Rupp, A.: High Dimensional Wavelet Methods for Structured Financial Products. PhD thesis, Ulm University (2013)

  32. Schmidt, M., Roux, N.L., Bach, F.R.: Convergence rates of inexact proximal-gradient methods for convex optimization. In: Shawe-Taylor, J, Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp 1458–1466. Curran Associates, Inc. (2011)

  33. Schneider, R., Uschmajew, A.: Approximation rates for the hierarchical tensor format in periodic Sobolev spaces. J. Complexity 30(2), 56–71 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Stevenson, R.: Optimality of a standard adaptive finite element method. Found Comput. Math. 7(2), 245–269 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Stevenson, R.: Adaptive wavelet methods for solving operator equations: an overview. In: Multiscale, Nonlinear and Adaptive Approximation, pp 543–597. Springer, Berlin (2009)

  36. Urban, K.: Wavelet Methods for Elliptic Partial Differential Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2009)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Markus Bachmayr, Rob Stevenson, and Wolfgang Dahmen for their very helpful comments on this work. This paper was partly written when Mazen Ali was a visiting researcher at Centrale Nantes in collaboration with Anthony Nouy. We acknowledge Anthony Nouy for the helpful discussions and financial support.

Funding

This study was financially supported by the European Model Reduction Network (TD COST Action TD1307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Ali.

Additional information

Communicated by: Alexander Barnett

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Urban, K. HT-AWGM: a hierarchical Tucker–adaptive wavelet Galerkin method for high-dimensional elliptic problems. Adv Comput Math 46, 59 (2020). https://doi.org/10.1007/s10444-020-09797-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09797-9

Keywords

Mathematics Subject Classification (2010)

Navigation