Skip to main content
Log in

The Role of Arachidonic Acid Metabolism in Myocardial Ischemia–Reperfusion Injury

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Patients with myocardial ischemic diseases or who are undergoing one of various heart treatments, such as open heart surgery, coronary artery bypass grafting, percutaneous coronary artery intervention or drug thrombolysis, face myocardial ischemia–reperfusion injury (MIRI). However, no effective treatment is currently available for MIRI. To improve the prognosis of people with cardiovascular disease, it is important to research the mechanism of MIRI. Arachidonic acid (AA) is one of the focuses of current research. The various metabolic pathways of AA are closely related to the development of cardiovascular disease, and the roles of various metabolites in ischemia–reperfusion injury have gradually been confirmed. AA is mainly metabolized in the cyclooxygenase (COX) pathway, lipoxygenase (LOX) pathway, and cytochrome P450 monooxygenase (CYP) pathway. This paper summarizes the progress of research on these three major AA metabolic pathways with respect to MIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jones, D. P., & Patel, J. (2018). Therapeutic approaches targeting inflammation in cardiovascular disorders. Biology (Basel), 7(4), 49.

    CAS  Google Scholar 

  2. Nichols, M., Townsend, N., Scarborough, P., & Rayner, M. (2014). Cardiovascular disease in Europe 2014: epidemiological update. European Heart Journal, 35(42), 2950–2959.

    CAS  PubMed  Google Scholar 

  3. Reed, G. W., Rossi, J. E., & Cannon, C. P. (2017). Acute myocardial infarction. Lancet, 389(10065), 197–210.

    Google Scholar 

  4. Lejay, A., Fang, F., John, R., Van, J. A., Barr, M., Thaveau, F., Chakfe, N., Geny, B., & Scholey, J. W. (2016). Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. Journal of Molecular and Cellular Cardiology, 91, 11–22.

    CAS  PubMed  Google Scholar 

  5. Herr, D. J., Singh, T., Dhammu, T., & Menick, D. R. (2020). Regulation of metabolism by mitochondrial enzyme acetylation in cardiac ischemia-reperfusion injury. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(6), 165728.

    Google Scholar 

  6. Shin, B., Cowan, D. B., Emani, S. M., Del, N. P., & McCully, J. D. (2017). Mitochondrial transplantation in myocardial ischemia and reperfusion injury. Advances in Experimental Medicine and Biology, 982, 595–619.

    CAS  PubMed  Google Scholar 

  7. Zhang, Y., Zhou, H., Wu, W., Shi, C., Hu, S., Yin, T., Ma, Q., Han, T., Zhang, Y., Tian, F., & Chen, Y. (2016). Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca(2+)-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radical Biology and Medicine, 95, 278–292.

    CAS  PubMed  Google Scholar 

  8. Cadenas, S. (2018). ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radical Biology and Medicine, 117, 76–89.

    CAS  PubMed  Google Scholar 

  9. Carbone, F., Teixeira, P. C., Braunersreuther, V., Mach, F., Vuilleumier, N., & Montecucco, F. (2015). Pathophysiology and treatments of oxidative injury in ischemic stroke: focus on the phagocytic NADPH oxidase 2. Antioxidants & Redox Signaling, 23(5), 460–489.

    CAS  Google Scholar 

  10. Belló-Klein, A., Khaper, N., Llesuy, S., Vassallo, D. V., & Pantos, C. (2014). Oxidative stress and antioxidant strategies in cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2014, 1–2.

    Google Scholar 

  11. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijević, D., Sundier, S. Y., Robb, E. L., Logan, A., Nadtochiy, S. M., Ord, E. N. J., Smith, A. C., Eyassu, F., Shirley, R., Hu, C., Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C., Eaton, S., Costa, A. S. H., Brookes, P. S., Davidson, S. M., Duchen, M. R., Saeb-Parsy, K., Shattock, M. J., Robinson, A. J., Work, L. M., Frezza, C., Krieg, T., & Murphy, M. P. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515(7527), 431–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanno, M., Kuno, A., Ishikawa, S., Miki, T., Kouzu, H., Yano, T., Murase, H., Tobisawa, T., Ogasawara, M., Horio, Y., & Miura, T. (2014). Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). Journal of Biological Chemistry, 289(42), 29285–29296.

    CAS  PubMed  Google Scholar 

  13. Maddaford, T. G., Dibrov, E., Hurtado, C., & Pierce, G. N. (2010). Reduced expression of the Na+/Ca2+exchanger in adult cardiomyocytes via adenovirally delivered shRNA results in resistance to simulated ischemic injury. American Journal of Physiology. Heart and Circulatory Physiology, 298(2), H360–H366.

    CAS  PubMed  Google Scholar 

  14. Wei, G., Zhou, J., Wang, B., Wu, F., Bi, H., Wang, Y., Yi, D., Yu, S., & Pei, J. (2007). Diastolic Ca2+ overload caused by Na+/Ca2+ exchanger during the first minutes of reperfusion results in continued myocardial stunning. European Journal of Pharmacology, 572(1), 1–11.

    CAS  PubMed  Google Scholar 

  15. Tribulova, N., Knezl, V., Szeiffova, B. B., Egan, B. T., Viczenczova, C., Goncalvesova, E., & Slezak, J. (2016). Disordered myocardial Ca(2+) homeostasis results in substructural alterations that may promote occurrence of malignant arrhythmias. Physiological Research, 65(Suppl 1), S139–S148.

    CAS  PubMed  Google Scholar 

  16. Garcia-Dorado, D., Ruiz-Meana, M., Inserte, J., Rodriguez-Sinovas, A., & Piper, H. M. (2012). Calcium-mediated cell death during myocardial reperfusion. Cardiovascular Research, 94(2), 168–180.

    CAS  PubMed  Google Scholar 

  17. Inserte, J., Hernando, V., & Garcia-Dorado, D. (2012). Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovascular Research, 96(1), 23–31.

    CAS  PubMed  Google Scholar 

  18. Kang, M., Zhang, Y., Matkovich, S. J., Diwan, A., Chishti, A. H., & Dorn, G. W. (2010). Receptor-independent cardiac protein kinase Cα activation by calpain-mediated truncation of regulatory domains. Circulation Research, 107(7), 903–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bodiga, V. L., Inapurapu, S. P., Vemuri, P. K., Kudle, M. R., & Bodiga, S. (2016). Intracellular zinc status influences cisplatin-induced endothelial permeability through modulation of PKCalpha, NF-kappaB and ICAM-1 expression. European Journal of Pharmacology, 791, 355–368.

    CAS  PubMed  Google Scholar 

  20. Romson, J. L., Hook, B. G., Kunkel, S. L., Abrams, G. D., Schork, M. A., & Lucchesi, B. R. (1983). Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation, 67(5), 1016–1023.

    CAS  PubMed  Google Scholar 

  21. Eltzschig, H. K., & Carmeliet, P. (2011). Hypoxia and inflammation. New England Journal of Medicine, 364(7), 656–665.

    CAS  PubMed  Google Scholar 

  22. Schofield, Z. V., Woodruff, T. M., Halai, R., Wu, M. C., & Cooper, M. A. (2013). Neutrophils—a key component of ischemia-reperfusion injury. Shock, 40(6), 463–470.

    CAS  PubMed  Google Scholar 

  23. Zhang, A., Mao, X., Li, L., Tong, Y., Huang, Y., Lan, Y., & Jiang, H. (2014). Necrostatin-1 inhibits Hmgb1-IL-23/IL-17 pathway and attenuates cardiac ischemia reperfusion injury. Transplant International, 27(10), 1077–1085.

    CAS  PubMed  Google Scholar 

  24. Jiang, Q., Yu, T., Huang, K., Lu, J., Zhang, H., & Hu, S. (2016). Remote ischemic postconditioning ameliorates the mesenchymal stem cells engraftment in reperfused myocardium. PLoS ONE, 11(1), e0146074.

    PubMed  PubMed Central  Google Scholar 

  25. Liao, Y. H., Xia, N., Zhou, S. F., Tang, T. T., Yan, X. X., Lv, B. J., Nie, S. F., Wang, J., Iwakura, Y., Xiao, H., Yuan, J., Jevallee, H., Wei, F., Shi, G. P., & Cheng, X. (2012). Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. Journal of the American College of Cardiology, 59(4), 420–429.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerczuk, P. Z., Breckenridge, D. G., Liles, J. T., Budas, G. R., Shryock, J. C., Belardinelli, L., Kloner, R. A., & Dai, W. (2012). An apoptosis signal-regulating kinase 1 inhibitor reduces cardiomyocyte apoptosis and infarct size in a rat ischemia-reperfusion model. Journal of Cardiovascular Pharmacology, 60(3), 276–282.

    CAS  PubMed  Google Scholar 

  27. Zhang, M. Q., Zheng, Y. L., Chen, H., Tu, J. F., Shen, Y., Guo, J. P., Yang, X. H., Yuan, S. R., Chen, L. Z., Chai, J. J., Lu, J. H., & Zhai, C. L. (2013). Sodium tanshinone IIA sulfonate protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway. Acta Pharmacologica Sinica, 34(11), 1386–1396.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chourasia, A. H., & Macleod, K. F. (2015). Tumor suppressor functions of BNIP3 and mitophagy. Autophagy, 11(10), 1937–1938.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhai, X., Qin, Y., Chen, Y., Lin, L., Wang, T., Zhong, X., Wu, X., Chen, S., Li, J., Wang, Y., Zhang, F., Zhao, W., & Zhong, Z. (2016). Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo. Experimental Cell Research, 349(2), 255–263.

    CAS  PubMed  Google Scholar 

  30. Sandanger, O., Ranheim, T., Vinge, L. E., Bliksoen, M., Alfsnes, K., Finsen, A. V., Dahl, C. P., Askevold, E. T., Florholmen, G., Christensen, G., Fitzgerald, K. A., Lien, E., Valen, G., Espevik, T., Aukrust, P., & Yndestad, A. (2013). The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovascular Research, 99(1), 164–174.

    CAS  PubMed  Google Scholar 

  31. Liu, Y., Lian, K., Zhang, L., Wang, R., Yi, F., Gao, C., Xin, C., Zhu, D., Li, Y., Yan, W., Xiong, L., Gao, E., Wang, H., & Tao, L. (2014). TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Research in Cardiology, 109(5), 415.

    PubMed  Google Scholar 

  32. Yang, Z., Day, Y. J., Toufektsian, M. C., Xu, Y., Ramos, S. I., Marshall, M. A., French, B. A., & Linden, J. (2006). Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation, 114(19), 2056–2064.

    CAS  PubMed  Google Scholar 

  33. Rizk, F. H., Abdel, G. M., Soliman, N. A., Shaaban, A. E., Atlam, R., Elsaadany, A., Eshra, K. A., & Shalaby, M. M. (2018). Vildagliptin recruits regulatory T cells in patients undergoing primary percutaneous coronary intervention. Immunological Investigations, 47(6), 583–592.

    CAS  PubMed  Google Scholar 

  34. Homma, T., Kinugawa, S., Takahashi, M., Sobirin, M. A., Saito, A., Fukushima, A., Suga, T., Takada, S., Kadoguchi, T., Masaki, Y., Furihata, T., Taniguchi, M., Nakayama, T., Ishimori, N., Iwabuchi, K., & Tsutsui, H. (2013). Activation of invariant natural killer T cells by alpha-galactosylceramide ameliorates myocardial ischemia/reperfusion injury in mice. Journal of Molecular and Cellular Cardiology, 62, 179–188.

    CAS  PubMed  Google Scholar 

  35. Shahabi, P., Siest, G., & Visvikis-siest, S. (2014). Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metabolism Reviews, 46(1), 33–56.

    CAS  PubMed  Google Scholar 

  36. Xie, C., Li, X., Wu, J., Liang, Z., Deng, F., Xie, W., Zhu, M., Zhu, J., Zhu, W., Geng, S., & Zhong, C. (2015). Anti-inflammatory activity of magnesium isoglycyrrhizinate through inhibition of phospholipase A2/arachidonic acid pathway. Inflammation, 38(4), 1639–1648.

    CAS  PubMed  Google Scholar 

  37. Fernando, M. R., Giembycz, M. A., & McKay, D. M. (2016). Bidirectional crosstalk via IL-6, PGE2 and PGD2 between murine myofibroblasts and alternatively activated macrophages enhances anti-inflammatory phenotype in both cells. British Journal of Pharmacology, 173(5), 899–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kij, A., Mateuszuk, L., Sitek, B., Przyborowski, K., Zakrzewska, A., Wandzel, K., Walczak, M., & Chlopicki, S. (2016). Simultaneous quantification of PGI 2 and TXA 2 metabolites in plasma and urine in NO-deficient mice by a novel UHPLC/MS/MS method. Journal of Pharmaceutical and Biomedical Analysis, 129, 148–154.

    CAS  PubMed  Google Scholar 

  39. Czapski, G. A., Czubowicz, K., Strosznajder, J. B., & Strosznajder, R. P. (2016). The lipoxygenases: their regulation and implication in Alzheimer’s disease. Neurochemical Research, 41(1-2), 243–257.

    CAS  PubMed  Google Scholar 

  40. Okuno, T., Koutsogiannaki, S., Ohba, M., Chamberlain, M., Bu, W., Lin, F., Eckenhoff, R. G., Yokomizo, T., & Yuki, K. (2017). Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B4 production. The FASEB Journal, 31(4), 1584–1594.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yeung, J., & Holinstat, M. (2017). Who is the real 12-HETrE? Prostaglandins & Other Lipid Mediators, 132, 25–30.

    CAS  Google Scholar 

  42. Wu, Y., Xu, D., Zhu, X., Yang, G., & Ren, M. (2017). MiR-106a associated with diabetic peripheral neuropathy through the regulation of 12/15-LOX-meidiated oxidative/nitrative stress. Current Neurovascular Research, 14(2), 117–124.

    CAS  PubMed  Google Scholar 

  43. Elmasry, K., Ibrahim, A. S., Saleh, H., Elsherbiny, N., Elshafey, S., Hussein, K. A., & Al-Shabrawey, M. (2018). Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy. Diabetologia, 61(5), 1220–1232.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Habouri, L., El, M. F., Ouhaddi, Y., Lussier, B., Pelletier, J. P., Martel-Pelletier, J., Benderdour, M., & Fahmi, H. (2017). Deletion of 12/15-lipoxygenase accelerates the development of aging-associated and instability-induced osteoarthritis. Osteoarthritis and Cartilage, 25(10), 1719–1728.

    CAS  PubMed  Google Scholar 

  45. Deng, Y., Theken, K. N., & Lee, C. R. (2010). Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. Journal of Molecular and Cellular Cardiology, 48(2), 331–341.

    CAS  PubMed  Google Scholar 

  46. Tang, X., & Chen, S. (2015). Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Current Drug Metabolism, 16(2), 86–96.

    CAS  PubMed  Google Scholar 

  47. Chen, L., Ackerman, R., Saleh, M., Gotlinger, K. H., Kessler, M., Mendelowitz, L. G., Falck, J. R., Arbab, A. S., Scicli, A. G., Schwartzman, M. L., Yang, J., & Guo, A. M. (2014). 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo. Journal of Pharmacology and Experimental Therapeutics, 348(3), 442–451.

    PubMed  Google Scholar 

  48. Moon, S. H., Mancuso, D. J., Sims, H. F., Liu, X., Nguyen, A. L., Yang, K., Guan, S., Dilthey, B. G., Jenkins, C. M., Weinheimer, C. J., Kovacs, A., Abendschein, D., & Gross, R. W. (2016). Cardiac myocyte-specific knockout of iPLA2 γ decreases oxidized fatty acids during ischemia/reperfusion and reduces infarct size. Journal of Biological Chemistry, 291(37), 19687–19700.

    CAS  PubMed  Google Scholar 

  49. Shibata, R., Sato, K., Pimentel, D. R., Takemura, Y., Kihara, S., Ohashi, K., Funahashi, T., Ouchi, N., & Walsh, K. (2005). Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nature Medicine, 11(10), 1096–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bolli, R., Shinmura, K., Tang, X. L., Kodani, E., Xuan, Y. T., Guo, Y., & Dawn, B. (2002). Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovascular Research, 55(3), 506–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, H., Zhu, Q. W., Ye, P., Li, Z. B., Li, Y., Cao, Z. L., & Shen, L. (2012). Pioglitazone attenuates myocardial ischemia-reperfusion injury via up-regulation of ERK and COX-2. Bioscience Trends, 6(6), 325–332.

    CAS  PubMed  Google Scholar 

  52. Booth, E. A., Flint, R. R., Lucas, K. L., Knittel, A. K., & Lucchesi, B. R. (2008). Estrogen protects the heart from ischemia-reperfusion injury via COX-2-derived PGI2. Journal of Cardiovascular Pharmacology, 52(3), 228–235.

    CAS  PubMed  Google Scholar 

  53. Xiao, C. Y., Hara, A., Yuhki, K., Fujino, T., Ma, H., Okada, Y., Takahata, O., Yamada, T., Murata, T., Narumiya, S., & Ushikubi, F. (2001). Roles of prostaglandin I(2) and thromboxane A(2) in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors. Circulation, 104(18), 2210–2215.

    CAS  PubMed  Google Scholar 

  54. Birkenmeier, K., Staudt, A., Schunck, W., Janke, I., Labitzke, C., Prange, T., Trimpert, C., Krieg, T., Landsberger, M., Stangl, V., & Felix, S. B. (2007). COX-2-dependent and potentially cardioprotective effects of negative inotropic substances released after ischemia. American Journal of Physiology-Heart and Circulatory, 293(4), H2148–H2154.

    CAS  Google Scholar 

  55. Lin, Y., Tang, G., Jiao, Y., Yuan, Y., Zheng, Y., Chen, Y., Xiao, J., Li, C., Chen, Z., & Cao, P. (2018). Propionibacterium acnes induces intervertebral disc degeneration by promoting iNOS/NO and COX-2/PGE2 activation via the ROS-Dependent NF-κB pathway. Oxidative Medicine and Cellular Longevity, 2018, 1–12.

    Google Scholar 

  56. Chen, H., Yang, C., Chang, J., Wu, C., Sia, K., & Lin, W. (2017). AdipoR-increased intracellular ROS promoted cPLA2 and COX-2 expression via activation of PKC and p300 in adiponectin-stimulated human alveolar type II cells. American Journal of Physiology–Lung Cellular and Molecular Physiology, 311(2), L255–L269.

    Google Scholar 

  57. Kim, H. G., Kim, Y. R., Park, J. H., Khanal, T., Choi, J. H., Do, M. T., Jin, S. W., Han, E. H., Chung, Y. H., & Jeong, H. G. (2015). Endosulfan induces COX-2 expression via NADPH oxidase and the ROS, MAPK, and Akt pathways. Archives of Toxicology, 89(11), 2039–2050.

    CAS  PubMed  Google Scholar 

  58. Adamek, A., Jung, S., Dienesch, C., Laser, M., Ertl, G., Bauersachs, J., & Frantz, S. (2007). Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice. European Journal of Pharmacology, 571(1), 51–54.

    CAS  PubMed  Google Scholar 

  59. Hiroi, T., Wajima, T., Negoro, T., Ishii, M., Nakano, Y., Kiuchi, Y., Mori, Y., & Shimizu, S. (2013). Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovascular Research, 97(2), 271–281.

    CAS  PubMed  Google Scholar 

  60. Bitencourt, C. S., Bessi, V. L., Huynh, D. N., Ménard, L., Lefebvre, J. S., Lévesque, T., Hamdan, L., Sohouhenou, F., Faccioli, L. H., Borgeat, P., & Marleau, S. (2013). Cooperative role of endogenous leucotrienes and platelet-activating factor in ischaemia-reperfusion-mediated tissue injury. Journal of Cellular and Molecular Medicine, 17(12), 1554–1565.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhatt, L., Roinestad, K., Van, T., & Springman, E. B. (2017). Recent advances in clinical development of leukotriene B4 pathway drugs. Seminars in Immunology, 33, 65–73.

    CAS  PubMed  Google Scholar 

  62. Duah, E., Adapala, R. K., Al-Azzam, N., Kondeti, V., Gombedza, F., Thodeti, C. K., & Paruchuri, S. (2013). Cysteinyl leukotrienes regulate endothelial cell inflammatory and proliferative signals through CysLT2 and CysLT1 receptors. Scientific Reports, 3, 3274.

    PubMed  PubMed Central  Google Scholar 

  63. Lynch, K. R., O’Neill, G. P., Liu, Q., Im, D. S., Sawyer, N., Metters, K. M., Coulombe, N., Abramovitz, M., Figueroa, D. J., Zeng, Z., Connolly, B. M., Bai, C., Austin, C. P., Chateauneuf, A., Stocco, R., Greig, G. M., Kargman, S., Hooks, S. B., Hosfield, E., Williams, D. J., Ford-Hutchinson, A. W., Caskey, C. T., & Evans, J. F. (1999). Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature, 399(6738), 789–793.

    CAS  PubMed  Google Scholar 

  64. Chen, Z., Wu, Z., Huang, C., Zhao, Y., Zhou, Y., Zhou, X., Lu, X., Mao, L., & Li, S. (2013). Effect of lipoxin A4 on myocardial ischemia reperfusion injury following cardiac arrest in a rabbit model. Inflammation, 36(2), 468–475.

    CAS  PubMed  Google Scholar 

  65. Zhao, Q., Shao, L., Hu, X., Wu, G., Du, J., Xia, J., & Qiu, H. (2013). Lipoxin A4 preconditioning and postconditioning protect myocardial ischemia/reperfusion injury in rats. Mediators of Inflammation, 2013, 1–13.

    Google Scholar 

  66. Zhao, Q., Hu, X., Shao, L., Wu, G., Du, J., & Xia, J. (2014). LipoxinA4 attenuates myocardial ischemia reperfusion injury via a mechanism related to downregulation of GRP-78 and caspase-12 in rats. Heart and Vessels, 29(5), 667–678.

    PubMed  Google Scholar 

  67. Liu, Q., Xiao, L., Yuan, D., Shi, X., & Li, P. (2012). Silencing of the integrin-linked kinase gene induces the apoptosis in ovarian carcinoma. Journal of Receptor and Signal Transduction, 32(2), 120–127.

    CAS  Google Scholar 

  68. Nardi, M., Feinmark, S. J., Hu, L., Li, Z., & Karpatkin, S. (2004). Complement-independent Ab-induced peroxide lysis of platelets requires 12-lipoxygenase and a platelet NADPH oxidase pathway. Journal of Clinical Investigation, 113(7), 973–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Porro, B., Songia, P., Squellerio, I., Tremoli, E., & Cavalca, V. (2014). Analysis, physiological and clinical significance of 12-HETE: A neglected platelet-derived 12-lipoxygenase product. Journal of Chromatography B, 964, 26–40.

    CAS  Google Scholar 

  70. Ma, Y., Fu, Y., Khojasteh, S. C., Dalvie, D., & Zhang, D. (2017). Glucuronides as potential anionic substrates of human cytochrome P450 2C8 (CYP2C8). Journal of Medicinal Chemistry, 60(21), 8691–8705.

    CAS  PubMed  Google Scholar 

  71. Dujic, T., Zhou, K., Donnelly, L. A., Leese, G., Palmer, C. N. A., & Pearson, E. R. (2017). Interaction between variants in the CYP2C9 and POR genes and the risk of sulfonylurea‐induced hypoglycaemia: A GoDARTS Study. Diabetes, Obesity and Metabolism, 20(1), 211–214.

    PubMed  Google Scholar 

  72. Park, J. W., Lee, C. M., Cheng, J. S., & Morgan, E. T. (2018). Posttranslational regulation of CYP2J2 by nitric oxide. Free Radical Biology and Medicine, 121, 149–156.

    CAS  PubMed  Google Scholar 

  73. Wang, Y., Huang, X., Ma, Z., Wang, Y., Chen, X., & Gao, Y. (2018). Ophiopogonin D alleviates cardiac hypertrophy in rat by upregulating CYP2J3 in vitro and suppressing inflammation in vivo. Biochemical and Biophysical Research Communications, 503(2), 1011–1019.

    CAS  PubMed  Google Scholar 

  74. Moffat, M. P., Ward, C. A., Bend, J. R., Mock, T., Farhangkhoee, P., & Karmazyn, M. (1993). Effects of epoxyeicosatrienoic acids on isolated hearts and ventricular myocytes. American Journal of Physiology, 264(4 Pt 2), H1154–H1160.

    CAS  PubMed  Google Scholar 

  75. Karara, A., Makita, K., Jacobson, H. R., Falck, J. R., Guengerich, F. P., DuBois, R. N., & Capdevila, J. H. (1993). Molecular cloning, expression, and enzymatic characterization of the rat kidney cytochrome P-450 arachidonic acid epoxygenase. Journal of Biological Chemistry, 268(18), 13565.

    CAS  PubMed  Google Scholar 

  76. Granville, D. J., Tashakkor, B., Takeuchi, C., Gustafsson, Å. B., Huang, C., Sayen, M. R., Wentworth, P., Yeager, M., & Gottlieb, R. A. (2004). Reduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 Inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 101(5), 1321–1326.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Seubert, J., Yang, B., Bradbury, J. A., Graves, J., Degraff, L. M., Gabel, S., Gooch, R., Foley, J., Newman, J., Mao, L., Rockman, H. A., Hammock, B. D., Murphy, E., & Zeldin, D. C. (2004). Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circulation Research, 95(5), 506–514.

    CAS  PubMed  Google Scholar 

  78. Fichtlscherer, S., Dimmeler, S., Breuer, S., Busse, R., Zeiher, A. M., & Fleming, I. (2004). Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide–mediated vasodilatation in patients with coronary artery disease. Circulation, 109(2), 178–183.

    CAS  PubMed  Google Scholar 

  79. Ding, Y., Li, Y., Zhang, X., He, J., Lu, D., Fang, X., Wang, Y., Wang, J., Zhang, Y., Qiao, X., Gan, L. M., Chen, C., & Zhu, Y. (2017). Soluble epoxide hydrolase activation by S-nitrosation contributes to cardiac ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 110, 70–79.

    CAS  PubMed  Google Scholar 

  80. Motoki, A., Merkel, M. J., Packwood, W. H., Cao, Z., Liu, L., Iliff, J., Alkayed, N. J., & Van Winkle, D. M. (2008). Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. American Journal of Physiology: Heart and Circulatory, 295(5), H2128–H2134.

    CAS  Google Scholar 

  81. Fu, Z., Ma, Y., Xie, X., Huang, D., Yang, H., Nakayama, T., & Sato, N. (2012). A novel polymorphism of the CYP4A11 gene is associated with coronary artery disease. Clinical and Applied Thrombosis/Hemostasis, 19(1), 60–65.

    PubMed  Google Scholar 

  82. Joseph, G., Soler, A., Hutcheson, R., Hunter, I., Bradford, C., Hutcheson, B., Gotlinger, K. H., Jiang, H., Falck, J. R., Proctor, S., Schwartzman, M. L., & Rocic, P. (2017). Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction. American Journal of Physiology: Heart and Circulatory, 312(3), H528–H540.

    Google Scholar 

  83. Rocic, P., & Schwartzman, M. L. (2018). 20-HETE in the regulation of vascular and cardiac function. Pharmacology & Therapeutics, 192, 74–87.

    CAS  Google Scholar 

  84. Han, Y., Zhao, H., Tang, H., Li, X., Tan, J., Zeng, Q., & Sun, C. (2013). 20-hydroxyeicosatetraenoic acid mediates isolated heart ischemia/reperfusion injury by increasing NADPH oxidase-derived reactive oxygen species production. Circulation Journal, 77(7), 1807–1816.

    CAS  PubMed  Google Scholar 

  85. Gross, E. (2004). Cytochrome P450 ⍵-hydroxylase inhibition reduces infarct size during reperfusion via the sarcolemmal KATP channel. Journal of Molecular and Cellular Cardiology, 37(6), 1245–1249.

    CAS  PubMed  Google Scholar 

  86. Bao, Y., Wang, X., Li, W., Huo, D., Shen, X., Han, Y., Tan, J., Zeng, Q., & Sun, C. (2011). 20-Hydroxyeicosatetraenoic acid induces apoptosis in neonatal rat cardiomyocytes through mitochondrial-dependent pathways. Journal of Cardiovascular Pharmacology, 57(3), 294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author Contributions

H.X., Y.H.L., and Y.Z.D. contributed to the conception of the study. C.J.Z., M.L.H., L.H.N., K.H., and K.S. contributed significantly to analysis and paper preparation. All authors read and approved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinzhi Deng, Yuanhong Li or Hao Xia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., He, M., Ni, L. et al. The Role of Arachidonic Acid Metabolism in Myocardial Ischemia–Reperfusion Injury. Cell Biochem Biophys 78, 255–265 (2020). https://doi.org/10.1007/s12013-020-00928-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00928-z

Keywords

Navigation