Skip to main content
Log in

Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We are concerned with the vanishing viscosity limit of the 2D compressible micropolar equations to the Riemann solution of the 2D Euler equations which admit a planar rarefaction wave. In this article, the key point of the analysis is to introduce the hyperbolic wave, which helps us obtain the desired uniform estimates with respect to the viscosities. Moreover, the proper combining of rotation terms and damping term is also important, which contributes to closing the basic energy estimates. Finally, a family of smooth solutions for the 2D micropolar equations converging to the corresponding planar rarefaction wave solution with arbitrary strength is pursued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, H., Yin, H.: Stability of the composite wave for the inflow problem on the micropolar fluid model. Commun. Pure Appl. Anal. 16, 1265–1292 (2017)

    Article  MathSciNet  Google Scholar 

  2. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  3. Gong, G., Zhang, L.: Asymtotic stability of planar rarefaction wave to 3d micropolar equations. J. Math. Anal. Appl. 485, 123819 (2020). (accepted)

    Article  MathSciNet  Google Scholar 

  4. Hoff, D., Liu, T.-P.: The inviscid limit for the Navier–Stokes equations of compressible, isentropic flow with shock data. Indiana Univ. Math. J. 38, 861–915 (1989)

    Article  MathSciNet  Google Scholar 

  5. Huang, B., Tang, S., Zhang, L.: Nonlinear stability of viscous shock profiles for compressible Navier–Stokes equations with temperature-dependent transport coefficients and large initial perturbation, Z. Angew. Math. Phys. 69, Art. 136, 35 (2018)

  6. Huang, F., Li, M., Wang, Y.: Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 44, 1742–1759 (2012)

    Article  MathSciNet  Google Scholar 

  7. Huang, F., Matsumura, A., Xin, Z.: Stability of contact discontinuities for the 1-D compressible Navier–Stokes equations. Arch. Ration. Mech. Anal. 179, 55–77 (2006)

    Article  MathSciNet  Google Scholar 

  8. Huang, F., Wang, Y., Wang, Y., Yang, T.: The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J. Math. Anal. 45, 1741–1811 (2013)

    Article  MathSciNet  Google Scholar 

  9. Huang, F., Wang, Y., Yang, T.: Vanishing viscosity limit of the compressible Navier–Stokes equations for solutions to a Riemann problem. Arch. Ration. Mech. Anal. 203, 379–413 (2012)

    Article  MathSciNet  Google Scholar 

  10. Huang, F., Xin, Z., Yang, T.: Contact discontinuity with general perturbations for gas motions. Adv. Math. 219, 1246–1297 (2008)

    Article  MathSciNet  Google Scholar 

  11. Ito, K.: Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensions. Math. Models Methods Appl. Sci. 6, 315–338 (1996)

    Article  MathSciNet  Google Scholar 

  12. Jiang, S., Ni, G., Sun, W.: Vanishing viscosity limit to rarefaction waves for the Navier–Stokes equations of one-dimensional compressible heat-conducting fluids. SIAM J. Math. Anal. 38, 368–384 (2006)

    Article  MathSciNet  Google Scholar 

  13. Jin, J., Duan, R.: Stability of rarefaction waves for 1-D compressible viscous micropolar fluid model. J. Math. Anal. Appl. 450, 1123–1143 (2017)

    Article  MathSciNet  Google Scholar 

  14. Kawashima, S., Matsumura, A.: Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun. Math. Phys. 101, 97–127 (1985)

    Article  MathSciNet  Google Scholar 

  15. Kawashima, S., Matsumura, A., Nishihara, K.: Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas. Proc. Jpn. Acad. Ser. A Math. Sci. 62, 249–252 (1986)

    Article  MathSciNet  Google Scholar 

  16. Li, L.-A., Wang, D., Wang, Y.: Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier–Stokes equations. Commun. Math. Phys. 376, 378 (2019)

    MathSciNet  Google Scholar 

  17. Li, L.-A., Wang, T., Wang, Y.: Stability of planar rarefaction wave to 3d full compressible Navier–Stokes equations. Arch. Ration. Mech. Anal. 230, 911–937 (2018)

    Article  MathSciNet  Google Scholar 

  18. Li, L.-A., Wang, Y.: Stability of planar rarefaction wave to two-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 50, 4937–4963 (2018)

    Article  MathSciNet  Google Scholar 

  19. Li, M.-J., Wang, T.: Zero dissipation limit to rarefaction wave with vacuum for one-dimensional full compressible Navier–Stokes equations. Commun. Math. Sci. 12, 1135–1154 (2014)

    Article  MathSciNet  Google Scholar 

  20. Liu, Q., Yin, H.: Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model. Nonlinear Anal. 149, 41–55 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liu, T.-P.: Shock waves for compressible Navier–Stokes equations are stable. Commun. Pure Appl. Math. 39, 565–594 (1986)

    Article  MathSciNet  Google Scholar 

  22. Liu, T.-P., Xin, Z.P.: Nonlinear stability of rarefaction waves for compressible Navier–Stokes equations. Commun. Math. Phys. 118, 451–465 (1988)

    Article  MathSciNet  Google Scholar 

  23. Matsumura, A., Nishihara, K.: Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Jpn. J. Appl. Math. 3, 1–13 (1986)

    Article  MathSciNet  Google Scholar 

  24. Matsumura, A., Nishihara, K.: Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Commun. Math. Phys. 144, 325–335 (1992)

    Article  MathSciNet  Google Scholar 

  25. Nishihara, K., Yang, T., Zhao, H.: Nonlinear stability of strong rarefaction waves for compressible Navier–Stokes equations. SIAM J. Math. Anal. 35, 1561–1597 (2004)

    Article  MathSciNet  Google Scholar 

  26. Solonnikov, V.A.: The solvability of the Initial-boundary Value Problem for the Equations of Motion of a Viscous Compressible Fluid, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56, pp. 128–142, 197. Investigations on linear operators and theory of functions, VI (1976)

  27. Tang, S., Zhang, L.: Nonlinear stability of viscous shock waves for one-dimensional nonisentropic compressible Navier–Stokes equations with a class of large initial perturbation. Acta Math. Sci. Ser. B (Engl. Ed.) 38, 973–1000 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Xin, Z., Zeng, H.: Convergence to rarefaction waves for the nonlinear Boltzmann equation and compressible Navier–Stokes equations. J. Differ. Equ. 249, 827–871 (2010)

    Article  MathSciNet  Google Scholar 

  29. Xin, Z.P.: Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions. Trans. Am. Math. Soc. 319, 805–820 (1990)

    Article  MathSciNet  Google Scholar 

  30. Yin, H.: Stability of stationary solutions for inflow problem on the micropolar fluid model, Z. Angew. Math. Phys. 68, pp. Art. 44, 13 (2017)

  31. Zheng, L., Chen, Z., Zhang, S.: Asymptotic stability of a composite wave for the one-dimensional compressible micropolar fluid model without viscosity. J. Math. Anal. Appl. 468, 865–892 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants from NNSFC under the Contract 11731008, 11671309 and 11971359. The authors express much gratitude to Professor Huijiang Zhao for his support and his suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, G., Zhang, L. Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem. Z. Angew. Math. Phys. 71, 121 (2020). https://doi.org/10.1007/s00033-020-01347-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01347-z

Keywords

Mathematics Subject Classification

Navigation