Skip to main content

Advertisement

Log in

Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignocellulosic feedstocks are gaining increased popularity for novel industrial applications because of their availability and bio-renewability. Using lignocellulosic materials, especially from agricultural and forestry sectors could help reduce the over-dependence on petrochemical resources while providing a sustainable waste management alternative. This review aims to describe the chemistry of different components of lignocellulosic biomass (cellulose, hemicellulose, lignin, extractives and ash). Besides, many novel industrial applications of lignocellulosic biomass have been comprehensively described, which includes biorefining for biofuel and biochemical production, biomedical, cosmeceuticals and pharmaceuticals, bioplastics, multifunctional carbon materials and other eco-friendly specialty products. The production and applications of lignocellulose-derived carbon materials such as activated carbon, carbon nanotubes, carbon nanohorns, etc. have been highlighted. The potential industrial utility of cellulose and lignin-based specialty materials such as cellulose fiber, bacterial cellulose, epoxides, polyolefins, phenolic resins, bioplastics are discussed in this review. The cutting-edge industrial utilization of lignocellulosic biomass described in this review suggests its major role in establishing a circular bioeconomy that consists of innovative design and advanced production methods to facilitate industrial recovery and reuse of waste materials beyond biofuel and biochemical production.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Ge et al. [152] and recreated with copyright permission from Elsevier

Fig. 6

Adapted from Brodin et al. [159] and recreated with copyright permission from Elsevier

Similar content being viewed by others

References

  1. Rana, R., Nanda, S., Kozinski, J.A., Dalai, A.K.: Investigating the applicability of Athabasca bitumen as a feedstock for hydrogen production through catalytic supercritical water gasification. J. Environ. Chem. Eng. 6, 182–189 (2018)

    Google Scholar 

  2. Rana, R., Nanda, S., Maclennan, A., Hu, Y., Kozinski, J.A., Dalai, A.K.: Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water. J. Energ. Chem. 31, 107–118 (2019)

    Google Scholar 

  3. Adekunle, K.F., Okolie, J.A.: A Review of biochemical process of anaerobic digestion. Adv. Biosci. Biotechnol. 6, 205–212 (2015)

    Google Scholar 

  4. Nanda, S., Reddy, S.N., Mitra, S.K., Kozinski, J.A.: The progressive routes for carbon capture and sequestration. Energ. Sci. Eng. 4, 99–122 (2016)

    Google Scholar 

  5. Nanda, S., Azargohar, R., Dalai, A.K., Kozinski, J.A.: An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew. Sust. Energ. Rev. 50, 925–941 (2015)

    Google Scholar 

  6. Rana, R., Nanda, S., Reddy, S.N., Dalai, A.K., Kozinski, J.A., Gökalp, I.: Catalytic gasification of light and heavy gas oils in supercritical water. J. Energy Inst. (2020). https://doi.org/10.1016/j.joei.2020.04.018

    Article  Google Scholar 

  7. Parakh, P.D., Nanda, S., Kozinski, J.A.: Eco-friendly transformation of waste biomass to biofuels. Curr. Biochem. Eng. 6, 120–134 (2020)

    Google Scholar 

  8. Ahorsu, R., Medina, F., Constantí, M.: Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11, 3366 (2018)

    Google Scholar 

  9. British Petroleum. Statistical Review of World Energy. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (2020a) (Accessed 7 April 2020)

  10. British Petroleum. Renewable Energy. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy.html (2020b) (Accessed 7 April 2020)

  11. British Plastics Federation. Oil Consumption. https://www.bpf.co.uk/press/oil_consumption.aspx (2020) (Accessed 7 April 2020)

  12. Kamm, B.: Production of platform chemicals and synthesis gas from biomass. Angew. Chemie Int. Ed. 46, 5056–5058 (2007)

    Google Scholar 

  13. Nanda, S., Mohammad, J., Reddy, S.N., Kozinski, J.A., Dalai, A.K.: Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv. Bioref. 4, 157–191 (2014)

    Google Scholar 

  14. Nanda, S., Mohanty, P., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg. Res. 6, 663–677 (2013)

    Google Scholar 

  15. Konwer, D., Kataki, R., Deka, D.: Fuel-wood characteristics of some indigenous tree species of north-east India. Indian J. For. 24, 316–319 (2001)

    Google Scholar 

  16. Demirbaş, A.: Fuel characteristics of olive husk and walnut, hazelnut, sunflower, and almond shells. Energ. Sources 24, 215–221 (2002)

    Google Scholar 

  17. Shen, D., Gu, S., Luo, K., Bridgwater, A., Fang, M.X.: Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88, 1024–1030 (2009)

    Google Scholar 

  18. Naik, S., Goud, V.V., Rout, P.K., Jacobson, K., Dalai, A.K.: Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energ. 35, 1624–1631 (2010)

    Google Scholar 

  19. Adapa, P., Tabil, L., Schoenau, G.: Compaction characteristics of barley, canola, oat and wheat straw. Biosyst. Eng. 104, 335–344 (2009)

    Google Scholar 

  20. Razvigorova, M., Goranova, M., Minkova, V., Cerny, J.: On the composition of volatiles evolved during the production of carbon adsorbents from vegetable wastes. Fuel 73, 1718–1722 (1994)

    Google Scholar 

  21. Sánchez, C.: Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194 (2009)

    Google Scholar 

  22. Prasad, S., Singh, A., Joshi, H.C.: Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39 (2007)

    Google Scholar 

  23. Kim, T.H., Kim, J.S., Sunwoo, C., Lee, Y.Y.: Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol. 90, 39–47 (2003)

    Google Scholar 

  24. Stevulova, N., Cigasova, J., Estokova, A., Terpakova, E., Geffert, A., Kacik, F., Singovszka, E., Holub, M.: Properties characterization of chemically modified hemp hurds. Materials 7, 8131–8150 (2014)

    Google Scholar 

  25. Butler, E., Devlin, G., Meier, D., McDonnell, K.: Characterisation of spruce, salix, miscanthus and wheat straw for pyrolysis applications. Bioresour. Technol. 131, 202–209 (2013)

    Google Scholar 

  26. Aqsha, A., Tijani, M.M., Moghtaderi, B., Mahinpey, N.: Catalytic pyrolysis of straw biomasses (wheat, flax, oat and barley) and the comparison of their product yields. J. Anal. Appl. Pyrolysis 125, 201–208 (2017)

    Google Scholar 

  27. Brebu, M., Ucar, S., Vasile, C., Yanik, J.: Co-pyrolysis of pine cone with synthetic polymers. Fuel 89, 1911–1918 (2010)

    Google Scholar 

  28. Kumar, R., Wyman, C.E.: Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol. Prog. 25, 302–314 (2009)

    Google Scholar 

  29. Howard, R.L., Abotsi, E., van Jansen, R.E.L., Howard, S.: Lignocellulose biotechnology: issues of bioconversion and enzyme production. Af. J. Biotechnol. 2, 602–619 (2015)

    Google Scholar 

  30. Garca-Pèrez, M., Chaala, A., Roy, C.: Vacuum pyrolysis of sugarcane bagasse. J. Anal. Appl. Pyrolysis 65, 111–136 (2002)

    Google Scholar 

  31. McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46 (2002)

    Google Scholar 

  32. Singh, A., Nanda, S., Berruti, F.: A review of thermochemical and biochemical conversion of miscanthus to biofuels. In: Nanda, S., Vo, D.V.N., Sarangi, P.K. (eds.) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals, pp. 195–220. Springer Nature, Singapore (2020)

    Google Scholar 

  33. Nanda, S., Rana, R., Sarangi, P.K., Dalai, A.K., Kozinski, J.A.: A broad introduction to first, second and third generation biofuels. In: Sarangi, P.K., Nanda, S., Mohanty, P. (eds.) Recent Advancements in Biofuels and Bioenergy Utilization, pp. 1–25. Springer Nature, Singapore (2018)

    Google Scholar 

  34. Ullah, K., Sharma, V.K., Dhingra, S., Braccio, G., Ahmad, M., Sofia, S.: Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew. Sust. Energy Rev. 51, 682–698 (2015)

    Google Scholar 

  35. Achinas, S., Euverink, G.J.W.: Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron. J. Biotechnol. 23, 44–53 (2016)

    Google Scholar 

  36. Nanda, S., Rana, R., Zheng, Y., Kozinski, J.A., Dalai, A.K.: Insights on pathways for hydrogen generation from ethanol. Sustain. Energ. Fuels 1, 1232–1245 (2017)

    Google Scholar 

  37. Ahmad, E., Vani, A., Pant, K.K.: An overview of fossil fuel and biomass-based integrated energy systems: co-firing, co-combustion, co-pyrolysis, co-liquefaction, and co-gasification. In: Nanda, S., Sarangi, P.K., Vo, D.V.N. (eds.) Fuel Processing and Energy Utilization, pp. 15–30. CRC Press, New York (2019)

    Google Scholar 

  38. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: CHEMISTRY, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010)

    Google Scholar 

  39. Nanda, S., Maley, J., Kozinski, J.A., Dalai, A.K.: Physico-chemical evolution in lignocellulosic feedstocks during hydrothermal pretreatment and delignification. J. Biobased Mater. Bioenerg. 9, 295–308 (2015)

    Google Scholar 

  40. Hallac, B.B., Ragauskas, A.J.: Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuel Bioprod. Bioref. 5, 215–225 (2011)

    Google Scholar 

  41. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011)

    Google Scholar 

  42. Gibson, L.J., Soc, J.R.: The hierarchical structure and mechanics of plant materials. Interface 9, 2749–2766 (2012)

    Google Scholar 

  43. Pubchem. Cellulose. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/compound/CELLULOSE (Accessed 4 May 2020)

  44. Newman, R.H., Hill, S.J., Harris, P.J.: Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in Mung bean cell walls. Plant Physiol. 163, 1558–1567 (2013)

    Google Scholar 

  45. Martínez-Sanz, M., Gidley, M.J., Gilbert, E.P.: Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review. Carbohydr. Polym. 125, 120–134 (2015)

    Google Scholar 

  46. O’sullvian, A.C.: Cellulose: the structure slowly unravels. Cellulose 4, 173–207 (1997)

    Google Scholar 

  47. Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chemie Int. Ed. 44, 3358–3393 (2005)

    Google Scholar 

  48. Larsson, P.T., Westermark, U., Iversen, T.: Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13 C-NMR spectroscopy. Carbohydr. Res. 278, 339–343 (1995)

    Google Scholar 

  49. Larsson, P.T., Hult, E.L., Wickholm, K., Pettersson, E., Iversen, T.: CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl. Magn. Reson. 15, 31–40 (1999)

    Google Scholar 

  50. Chen, H.: Chemical composition and structure of natural lignocellulose. In: Chen, H. (ed.) Biotechnology of Lignocellulose, pp. 25–71. Springer, Dordrecht (2014)

    Google Scholar 

  51. Pubchem. D-Xylose. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/compound/135191 (Accessed 4 May 2020)

  52. Kormelink, F.J.M., Voragen, A.G.J.: Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degrading enzymes. Appl. Microbiol. Biotechnol. 38, 688–695 (1993)

    Google Scholar 

  53. Doner, L.W., Hicks, K.B.: Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem. 74, 176–181 (1997)

    Google Scholar 

  54. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291 (2003)

    Google Scholar 

  55. Yang, S.H.: Plant fiber chemistry. Light Industry Press, Beijing (2008)

    Google Scholar 

  56. Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R.: Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775–4800 (2010)

    Google Scholar 

  57. Wang, S., Dai, G., Yang, H., Luo, Z.: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust. Sci. 62, 33–86 (2017)

    Google Scholar 

  58. Ragauskas, A.J., Nagy, M., Kim, D.H., Eckert, C.A., Hallett, J.P., Liotta, C.L.: From wood to fuels: integrating biofuels and pulp production. Ind. Biotechnol. 2, 55–65 (2006)

    Google Scholar 

  59. Buranov, A.U., Mazza, G.: Lignin in straw of herbaceous crops. Ind. Crops Prod. 28, 237–259 (2008)

    Google Scholar 

  60. Reinoso, F.A.M., Rencoret, J., Gutiérrez, A., Milagres, A.M.F., del Río, J.C., Ferraz, A.: Fate of p-hydroxycinnamates and structural characteristics of residual hemicelluloses and lignin during alkaline-sulfite chemithermomechanical pretreatment of sugarcane bagasse. Biotechnol. Biofuels 11, 153 (2018)

    Google Scholar 

  61. Fougere, D., Nanda, S., Clarke, K., Kozinski, J.A., Li, K.: Effect of acidic pretreatment on the chemistry and distribution of lignin in aspen wood and wheat straw substrates. Biomass Bioenerg. 91, 56–68 (2016)

    Google Scholar 

  62. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)

    Google Scholar 

  63. Pandey, M.P., Kim, C.S.: Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34, 29–41 (2011)

    Google Scholar 

  64. Pubchem. Lignin, organosolv. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/compound/73555271 (Accessed 4 May 2020)

  65. Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H., Sederoff, R.: Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol. 154, 555–561 (2010)

    Google Scholar 

  66. Demirbas, A.: Combustion characteristics of different biomass fuels. Prog. Energ. Combust. Sci. 30, 219–230 (2004)

    Google Scholar 

  67. Nanda, S., Dalai, A.K., Kozinski, J.A.: Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energ. Sci. Eng. 2, 138–148 (2014)

    Google Scholar 

  68. Lawther, J.M., Sun, R., Banks, W.B.: Fractional characterization of alkali-labile lignin and alkali-insoluble lignin from wheat straw. Ind. Crop. Prod. 5, 291–300 (1996)

    Google Scholar 

  69. Lupoi, J.S., Singh, S., Parthasarathi, R., Simmons, B.A., Henry, R.J.: Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sust. Energy Rev. 49, 871–906 (2015)

    Google Scholar 

  70. Elle, O., Richter, R., Vohland, M., Weigelt, A.: Fine root lignin content is well predictable with near-infrared spectroscopy. Sci. Rep. 9, 6396 (2019)

    Google Scholar 

  71. Tamaki, Y., Mazza, G.: Rapid determination of lignin content of straw using Fourier transform mid-infrared spectroscopy. J. Agric. Food Chem. 59, 504–512 (2011)

    Google Scholar 

  72. Chen, Z., NaderiNasrabadi, M., Staser, J.A., Harrington, P.B.: Application of generalized standard addition method and ultraviolet spectroscopy to quantify electrolytic depolymerization of lignin. J. Anal. Test. 4, 35–44 (2020)

    Google Scholar 

  73. Lu, Y., Lu, Y.C., Hu, H.Q., Xie, F.J., Wei, X.Y., Fan, X.: Structural characterization of lignin and its degradation products with spectroscopic methods. J. Spectr. (2017). https://doi.org/10.1155/2017/8951658

    Article  Google Scholar 

  74. Ju, X., Engelhard, M., Zhang, X.: An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour. Technol. 132, 137–145 (2013)

    Google Scholar 

  75. Banoub, J., Delmas Jr., G.H., Joly, N., Mackenzie, G., Cachet, N., Benjelloun-Mlayah, B., Delmas, M.: A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. J. Mass Spec. 50, 5–48 (2015)

    Google Scholar 

  76. Chundawat, S.P.S., Balan, V., Sousa, L.D.C., Dale, B.E.: Thermochemical pretreatment of lignocellulosic biomass. In: Waldron, K. (ed.) Bioalcohol Production, pp. 24–72. Woodhead Publishing, Sawston (2010)

    Google Scholar 

  77. Constant, S., Basset, C., Dumas, C., Di Renzo, F., Robitzer, M., Barakat, A., Quignard, F.: Reactive organosolv lignin extraction from wheat straw: Influence of Lewis acid catalysts on structural and chemical properties of lignins. Ind. Crops Prod. 65, 180–189 (2015)

    Google Scholar 

  78. Macfarlane, A.L., Mai, M., Kadla, J.F.: Bio-based chemicals from biorefining: Lignin conversion and utilisation. In: Waldron, K. (ed.) Advances in Biorefineries, pp. 659–692. Woodhead Publishing, Sawston (2014)

    Google Scholar 

  79. Holladay, J.E., White, J.F., Bozell, J.J., Johnson, D.: Top Value-Added Chemicals from Biomass—Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin. Pacific Northwest National Laboratory, Richland (2007)

    Google Scholar 

  80. Keskin, T., Abubackar, H.N., Arslan, K., Azbar, N.: Biohydrogen production from solid wastes. In: Pandey, A., Mohan, S.V., Chang, J.S., Hallenbeck, P.C., Larroche, C. (eds.) Biohydrogen (second edition), pp. 321–346. Elsevier, New York (2019)

    Google Scholar 

  81. Bandyopadhyay-Ghosh, S., Ghosh, S.B., Sain, M.: The use of biobased nanofibres in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials, pp. 571–647. Woodhead Publishing, Sawston (2015)

    Google Scholar 

  82. Brethauer, S., Studer, M.H.: Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals—a review. CHIMIA Int. J. Chem. 69, 572–581 (2015)

    Google Scholar 

  83. Chen, H.: Lignocellulose biorefinery feedstock engineering. In: Chen, H. (ed.) Lignocellulose Biorefinery Engineering: Principles and Applications, pp. 37–86. Woodhead Publishing, Sawston (2015)

    Google Scholar 

  84. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Technical report NREL/TP-510-42623. National Renewable Energy Laboratory (NREL), Colorado (2008)

  85. Okolie, J.A., Rana, R., Nanda, S., Dalai, A.K., Kozinski, J.A.: Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain. Energy Fuel. 3, 578–598 (2019)

    Google Scholar 

  86. Aharoni, A., Jongsma, M.A., Bouwmeester, H.J.: Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10, 594–602 (2005)

    Google Scholar 

  87. Wang, X., Ort, D.R., Yuan, J.S.: Photosynthetic terpene hydrocarbon production for fuels and chemicals. Plant Biotechnol. J. 13, 137–146 (2015)

    Google Scholar 

  88. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel 94, 1–33 (2012)

    Google Scholar 

  89. Pettersson, A., Zevenhoven, M., Steenari, B.M., Amand, L.E.: Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes. Fuel 87, 3183–3193 (2008)

    Google Scholar 

  90. Demirbas, A.: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31, 171–192 (2005)

    Google Scholar 

  91. James, A.K., Thring, R.W., Helle, S., Ghuman, H.S.: Ash management review-applications of biomass bottom ash. Energies 5, 3856–3873 (2012)

    Google Scholar 

  92. Mohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493 (2013)

    Google Scholar 

  93. Nanda, S., Abraham, J.: Remediation of heavy metal contaminated soil. Afr. J. Biotechnol. 12, 3099–3109 (2013)

    Google Scholar 

  94. Khan, A.A., de Jong, W., Jansens, P.J., Spliethoff, H.: Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process. Technol. 90, 21–50 (2009)

    Google Scholar 

  95. Vamvuka, D.: Comparative fixed/fluidized bed experiments for the thermal behaviour and environmental impact of olive kernel ash. Renew. Energy 34, 158–164 (2009)

    Google Scholar 

  96. Nanda, S., Kozinski, J.A., Dalai, A.K.: Lignocellulosic biomass: A review of conversion technologies and fuel products. Curr. Biochem. Eng. 3, 24–36 (2015)

    Google Scholar 

  97. Nanda, S., Dalai, A.K., Berruti, F., Kozinski, J.A.: Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valor. 7, 201–235 (2016)

    Google Scholar 

  98. Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20, 848–889 (2006)

    Google Scholar 

  99. Joshi, N., Lawal, A.: Hydrodeoxygenation of pyrolysis oil in a microreactor. Chem. Eng. Sci. 74, 1–8 (2012)

    Google Scholar 

  100. Rutkowski, P.: Pyrolysis of cellulose, xylan and lignin with the K2CO3 and ZnCl2 addition for bio-oil production. Fuel Process. Technol. 92, 517–522 (2011)

    Google Scholar 

  101. Nanda, S., Mohanty, P., Kozinski, J.A., Dalai, A.K.: Physico-chemical properties of bio-oils from pyrolysis of lignocellulosic biomass with high and slow heating rate. Energ. Environ. Res. 4, 21–32 (2014)

    Google Scholar 

  102. Kim, S., Dale, B.E.: Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26, 361–375 (2004)

    Google Scholar 

  103. Morone, P., Cottoni, L.: Biofuels: technology, economics, and policy issues. In: Luque, R., Lin, C.S.K., Wilson, K., Clark, J. (eds.) Handbook of Biofuels Production: Processes and Technologies, pp. 61–83. Woodhead Publishing, Sawston (2016)

    Google Scholar 

  104. Khuong, L.S., Masjuki, H.H., Zulkifli, N.W.M., Mohamad, E.M., Kalam, M.A., Alabdulkarem, A., Arslan, A., Mosarof, M., Syahir, A.Z., Jamshaid, M.: Effect of gasoline–bioethanol blends on the properties and lubrication characteristics of commercial engine oil. RSC Adv. 7, 15005–15019 (2017)

    Google Scholar 

  105. Nanda, S., Golemi-Kotra, D., McDermott, J.C., Dalai, A.K., Gökalp, I., Kozinski, J.A.: Fermentative production of butanol: perspectives on synthetic biology. New Biotechnol. 37, 210–221 (2017)

    Google Scholar 

  106. Nanda, S., Rana, R., Vo, D.V.N., Sarangi, P.K., Nguyen, T.D., Dalai, A.K., Kozinski, J.A.: A spotlight on butanol and propanol as next-generation synthetic fuels. In: Nanda, S., Vo, D.V.N., Sarangi, P.K. (eds.) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals, pp. 105–126. Springer Nature, Singapore (2020)

    Google Scholar 

  107. Dürre, P.: Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525–1534 (2007)

    Google Scholar 

  108. Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S.: Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101, 209–228 (2008)

    Google Scholar 

  109. Sarangi, P.K., Nanda, S.: Recent developments and challenges of acetone–butanol–ethanol fermentation. In: Sarangi, P.K., Nanda, S., Mohanty, P. (eds.) Recent Advancements in Biofuels and Bioenergy Utilization, pp. 111–123. Springer Nature, Singapore (2018)

    Google Scholar 

  110. Nanda, S., Dalai, A.K., Kozinski, J.A.: Butanol from renewable biomass: highlights on downstream processing and recovery techniques. In: Mondal, P., Dalai, A.K. (eds.) Sustainable Utilization of Natural Resources, pp. 187–211. CRC Press, Florida (2017)

    Google Scholar 

  111. Khan, I.U., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A.F., Rezaei-DashtArzhandi, M., Wan Azelee, I.: Biogas as a renewable energy fuel—a review of biogas upgrading, utilisation and storage. Energy Convers. Manage. 150, 277–294 (2017)

    Google Scholar 

  112. Makareviciene, V., Sendzikiene, E., Pukalskas, S., Rimkus, A., Vegneris, R.: Performance and emission characteristics of biogas used in diesel engine operation. Energy Convers. Manage. 75, 224–233 (2013)

    Google Scholar 

  113. Molino, A., Migliori, M., Ding, Y., Bikson, B., Giordano, G., Braccio, G.: Biogas upgrading via membrane process: modelling of pilot plant scale and the end uses for the grid injection. Fuel 107, 585–592 (2013)

    Google Scholar 

  114. Mathai, R., Malhotra, R.K., Subramanian, K.A., Das, L.M.: Comparative evaluation of performance, emission, lubricant and deposit characteristics of spark ignition engine fueled with CNG and 18% hydrogen-CNG. Int. J. Hydrogen Energy 37, 6893–6900 (2012)

    Google Scholar 

  115. Rapagnà, S., Jand, N., Foscolo, P.U.: Catalytic gasification of biomass to produce hydrogen rich gas. Int. J. Hydrogen Energy 23, 551–557 (2002)

    Google Scholar 

  116. Sonal Ahmad, E., Upadhyayula, S., Pant, K.K.: Biomass-derived CO2 rich syngas conversion to higher hydrocarbon via Fischer–Tropsch process over Fe–Co bimetallic catalyst. Int. J. Hydrogen Energy 44, 27741–27748 (2019)

    Google Scholar 

  117. Munasinghe, P.C., Khanal, S.K.: Biomass-derived syngas fermentation into biofuels. Biofuels 26, 79–98 (2011)

    Google Scholar 

  118. Okolie, J.A., Nanda, S., Dalai, A.K., Berruti, F., Kozinski, J.A.: A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sust. Energy Rev. 119, 109546 (2020)

    Google Scholar 

  119. Jamal, Y., Wyszynski, M.L.: On-board generation of hydrogen-rich gaseous fuels-a review. Int. J. Hydrogen Energy 19, 557–572 (1994)

    Google Scholar 

  120. Levin, D.B., Zhu, H., Beland, M., Cicek, N., Holbein, B.E.: Potential for hydrogen and methane production from biomass residues in Canada. Bioresour. Technol. 98, 654–660 (2007)

    Google Scholar 

  121. Nanda, S., Li, K., Abatzoglou, N., Dalai, A.K., Kozinski, J.A.: Advancements and confinements in hydrogen production technologies. In: Dalena, F., Basile, A., Rossi, C. (eds.) Bioenergy Systems for the Future, pp. 373–418. Woodhead Publishing, Sawston (2017)

    Google Scholar 

  122. Sarangi, P.K., Nanda, S.: Biohydrogen production through dark fermentation. Chem. Eng. Technol. 43, 601–612 (2020)

    Google Scholar 

  123. Nanda, S., Dalai, A.K., Kozinski, J.A.: Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts. Biomass Bioenergy 95, 378–387 (2016)

    Google Scholar 

  124. Nanda, S., Reddy, S.N., Vo, D.V.N., Sahoo, B.N., Kozinski, J.A.: Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energy Sci. Eng. 6, 448–459 (2018)

    Google Scholar 

  125. Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A.: Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.05.132

    Article  Google Scholar 

  126. Okolie, J.A., Nanda, S., Dalai, A.K., Kozinski, J.A.: Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: experimental and thermodynamic modeling. Energy Convers. Manage. 208, 112545 (2020)

    Google Scholar 

  127. Sun, J., Xu, L., Dong, G.H., Nanda, S., Li, H., Fang, Z., Kozinski, J.A., Dalai, A.K.: Subcritical water gasification of lignocellulosic wastes for hydrogen production with Co modified Ni/Al2O3 catalyst. J. Supercrit. Fluids 162, 104863 (2020)

    Google Scholar 

  128. Meher, L.C., Sagar, D.V., Naik, S.N.: Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268 (2006)

    Google Scholar 

  129. Srivastava, A., Prasad, R.: Triglycerides-based diesel fuels. Renew. Sust. Energy Rev. 4, 111–133 (2000)

    Google Scholar 

  130. Reddy, S.N., Nanda, S., Kozinski, J.A.: Supercritical water gasification of glycerol and methanol mixtures as model waste residues from biodiesel refinery. Chem. Eng. Res. Des. 113, 17–27 (2016)

    Google Scholar 

  131. Reddy, S.N., Nanda, S., Sarangi, P.K.: Applications of supercritical fluids for biodiesel production. In: Sarangi, P.K., Nanda, S., Mohanty, P. (eds.) Recent Advancements in Biofuels and Bioenergy Utilization, pp. 261–284. Springer Nature, Singapore (2018)

    Google Scholar 

  132. Nayak, S.K., Nayak, B., Mishra, P.C., Noor, M.M., Nanda, S.: Effects of biodiesel blends and producer gas flow on overall performance of a turbocharged direct injection dual-fuel engine. Energy Sources A (2019). https://doi.org/10.1080/15567036.2019.1694101

    Article  Google Scholar 

  133. Shiu, P.J., Gunawan, S., Hsieh, W.H., Kasim, N.S., Ju, Y.H.: Biodiesel production from rice bran by a two-step in-situ process. Bioresour. Technol. 101, 984–989 (2010)

    Google Scholar 

  134. Deeba, F., Pruthi, V., Negi, Y.S.: Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresour. Technol. 213, 96–102 (2015)

    Google Scholar 

  135. Alonso, D.M., Wettstein, S.G., Dumesic, J.A.: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15, 584–595 (2013)

    Google Scholar 

  136. Peng, L., Lin, L., Zhang, J., Zhuang, J., Zhang, B., Gong, Y.: Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15, 5258–5272 (2010)

    Google Scholar 

  137. Román-Leshkov, Y., Chheda, J.N., Dumesic, J.A.: Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312, 1933–1937 (2006)

    Google Scholar 

  138. Wang, P., Zhan, S.H., Yu, H.B.: Production of levulinic acid from cellulose catalyzed by environmental-friendly catalyst. Adv. Mater. Res. 96, 183–187 (2010)

    Google Scholar 

  139. Zhao, H., Holladay, J.E., Brown, H., Zhang, Z.C.: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316, 1597–1600 (2007)

    Google Scholar 

  140. Efremov, A.A., Pervyshina, G.G., Kuznetsov, B.N.: Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts. Chem. Nat. Comp. 34, 182–185 (1998)

    Google Scholar 

  141. Asghari, F.S., Yoshida, H.: Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: Formation of 5-hydroxymethylfurfural, levulinic, and formic acids. Ind. Eng. Chem. Res. 46, 7703–7710 (2007)

    Google Scholar 

  142. Rahman, S.H.A., Choudhury, J.P., Ahmad, A.L., Kamaruddin, A.H.: Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour. Technol. 98, 554–559 (2007)

    Google Scholar 

  143. Kumar, R., Singh, S., Singh, O.V.: Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391 (2008)

    Google Scholar 

  144. Saha, B.C., Bothast, R.J.: Production of xylitol by Candida peltata. J. Ind. Microbiol. Biotechnol. 22, 633–636 (1999)

    Google Scholar 

  145. López-Linares, J.C., Romero, I., Cara, C., Castro, E., Mussatto, S.I.: Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour. Technol. 247, 736–743 (2018)

    Google Scholar 

  146. Cetera, P., D’Auria, M., Mecca, M., Todaro, L.: Gallic acid as main product in the water extractives of Quercus frainetto ten. Nat. Prod. Res. 14, 1–4 (2018)

    Google Scholar 

  147. Fache, M., Boutevin, B., Caillol, S.: Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016)

    Google Scholar 

  148. Kumar, N., Pruthi, V.: Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 4, 86–93 (2014)

    Google Scholar 

  149. Zanwar, A.A., Badole, S.L., Shende, P.S., Hegde, M.V., Bodhankar, S.L.: Role of gallic acid in cardiovascular disorders. Polyphenols Hum. Heal. Dis. 2, 1045–1047 (2013)

    Google Scholar 

  150. Gallezot, P.: Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41, 1538–1558 (2012)

    Google Scholar 

  151. Lichtenthaler, F.W.: Unsaturated O- and N-heterocycles from carbohydrate feedstocks. Acc. Chem. Res. 35, 728–737 (2002)

    Google Scholar 

  152. Ge, X., Chang, C., Zhang, L., Cui, S., Luo, X., Hu, S., Qin, Y., Li, Y.: Conversion of lignocellulosic biomass into platform chemicals for biobased polyurethane application. Adv. Bioenerg. 3, 161–213 (2018)

    Google Scholar 

  153. Thakur, S., Chaudhary, J., Sharma, B., Verma, A., Tamulevicius, S., Thakur, V.K.: Sustainability of bioplastics: opportunities and challenges. Curr. Opin. Green Sustain. Chem. 13, 68–75 (2018)

    Google Scholar 

  154. Mekonnen, T., Mussone, P., Khalil, H., Bressler, D.: Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A 1, 13379–13398 (2013)

    Google Scholar 

  155. Burgos, N., Valdés, A., Jiménez, A.: Valorization of agricultural wastes for the production of protein-based biopolymers. J. Renew. Mater. 4, 165–177 (2016)

    Google Scholar 

  156. Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B.H.: Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B. Biol. Sci. 364, 2127–2139 (2009)

    Google Scholar 

  157. Bátori, V., Åkesson, D., Zamani, A., Taherzadeh, M.J., Sárvári Horváth, I.: Anaerobic degradation of bioplastics: a review. Waste Manag. 80, 406–413 (2018)

    Google Scholar 

  158. Pawar, R.P., Tekale, S.U., Shisodia, S.U., Totre, J.T., Domb, A.J.: Biomedical applications of poly(lactic acid). Rec. Patents Regen. Med. 4, 40–51 (2014)

    Google Scholar 

  159. Brodin, M., Vallejos, M., Opedal, M.T., Area, M.C., Chinga-Carrasco, G.: Lignocellulosics as sustainable resources for production of bioplastics—a review. J. Clean. Prod. 162, 646–664 (2017)

    Google Scholar 

  160. Trache, D., Hussin, M.H., HuiChuin, C.T., Sabar, S., Fazita, M.R.N., Taiwo, O.F.A., Hassan, T.M., Haafiz, M.K.M.: Microcrystalline cellulose: Isolation, characterization and bio-composites application—a review. Int. J. Biol. Macromol. 93, 789–804 (2016)

    Google Scholar 

  161. Ramamoorthy, S.K., Skrifvars, M., Persson, A.: A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym. Rev. 55, 107–162 (2015)

    Google Scholar 

  162. Wang, S., Lu, A., Zhang, L.: Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016)

    Google Scholar 

  163. Medronho, B., Lindman, B.: Competing forces during cellulose dissolution: from solvents to mechanisms. Curr. Opin. Colloid Interface Sci. 19, 32–40 (2014)

    Google Scholar 

  164. Medronho, B., Lindman, B.: Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv. Colloid Interface Sci. 222, 502–508 (2015)

    Google Scholar 

  165. Babu, K.M.: Natural textile fibres: animal and silk fibres. In: Sinclair, R. (ed.) Textiles and Fashion: Materials, Design and Technology, pp. 57–78. Woodhead Publishing, Sawston (2014)

    Google Scholar 

  166. Fink, H.P., Weigel, P., Purz, H.J., Ganster, J.: Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 26, 1473–1524 (2001)

    Google Scholar 

  167. Qi, H., Chang, C., Zhang, L.: Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem. 11, 177–184 (2009)

    Google Scholar 

  168. Chen, J.: Synthetic textile fibers: Regenerated cellulose fibers. In: Sinclair, R. (ed.) Textiles and Fashion: Materials, Design and Technology, pp. 79–95. Woodhead Publishing, Sawston (2014)

    Google Scholar 

  169. Wilkes, A.G.: The viscose process. In: Woodings, C. (ed.) Regenerated Cellulose Fibres, pp. 37–61. Woodhead Publishing, Sawston (2001)

    Google Scholar 

  170. Kayra, N., Aytekin, A.Ö.: Synthesis of cellulose-based hydrogels: preparation, formation, mixture, and modification. In: Mondal, M.I.H. (ed.) Cellulose-Based Superabsorbent Hydrogels, pp. 1–28. Springer, Cham (2019)

    Google Scholar 

  171. Shen, X., Shamshina, J.L., Berton, P., Gurau, G., Rogers, R.D.: Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem. 18, 53–75 (2015)

    Google Scholar 

  172. Kulkarni, A.R., Soppimath, K.S., Aminabhavi, T.M., Dave, A.M., Mehta, M.H.: Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Control. Release 63, 97–105 (2000)

    Google Scholar 

  173. Mogoşanu, G.D., Grumezescu, A.M.: Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463, 127–136 (2014)

    Google Scholar 

  174. Arbona, V., Iglesias, D.J., Jacas, J., Primo-Millo, E., Talon, M., Gómez-Cadenas, A.: Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270, 73–82 (2005)

    Google Scholar 

  175. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001)

    Google Scholar 

  176. Job, N., Théry, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J.N., Béguin, F., Pirard, J.P.: Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43, 2481–2494 (2005)

    Google Scholar 

  177. Nayak, A.K., Das, B.: Introduction to polymeric gels. In: Pal, K., Banerjee, I. (eds.) Polymeric Gels, pp. 3–27. Woodhead Publishing, Sawston (2018)

    Google Scholar 

  178. Ansari, M.O., Kumar, R., Pervez Ansari, S., Abdel-wahab Hassan, M.S., Alshahrie, A., Barakat, M.A.E.-F.: Nanocarbon aerogel composites. In: Khan, A., Jawaid, M., Inamuddin, A., Asiri, A.M. (eds.) Nanocarbon and its Composites, pp. 1–26. Woodhead Publishing, Sawston (2019)

    Google Scholar 

  179. Domínguez, J.C., Oliet, M., Alonso, M.V., Gilarranz, M.A., Rodríguez, F.: Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Ind. Crops Prod. 27, 150–156 (2008)

    Google Scholar 

  180. Stewart, D.: Lignin as a base material for materials applications: chemistry, application and economics. Ind. Crops Prod. 27, 202–207 (2008)

    Google Scholar 

  181. Lora, J.H., Glasser, W.G.: Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ. 10, 39–48 (2002)

    Google Scholar 

  182. Naseem, A., Tabasum, S., Zia, K.M., Zuber, M., Ali, M., Noreen, A.: Lignin-derivatives based polymers, blends and composites: a review. Int. J. Biol. Macromol. 93, 296–313 (2016)

    Google Scholar 

  183. Azargohar, R., Nanda, S., Dalai, A.K.: Densification of agricultural wastes and forest residues: a review on influential parameters and treatments. In: Sarangi, P.K., Nanda, S., Mohanty, P. (eds.) Recent Advancements in Biofuels and Bioenergy Utilization, pp. 27–51. Springer Nature, Singapore (2018)

    Google Scholar 

  184. Azargohar, R., Nanda, S., Kang, K., Bond, T., Karunakaran, C., Dalai, A.K., Kozinski, J.A.: Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets. Renew. Energy 132, 296–307 (2019)

    Google Scholar 

  185. Wang, J., Vermerris, W.: Antimicrobial nanomaterials derived from natural products—a review. Materials 9, E255 (2016)

    Google Scholar 

  186. Espinoza-Acosta, J.L., Torres-Chávez, P.I., Olmedo-Martínez, J.L., Vega-Rios, A., Flores-Gallardo, S., Zaragoza-Contreras, E.A.: Lignin in storage and renewable energy applications: a review. J. Energy Chem. 27, 1422–1438 (2018)

    Google Scholar 

  187. Nadif, A., Hunkeler, D., Käuper, P.: Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Bioresour. Technol. 84, 49–55 (2002)

    Google Scholar 

  188. Fadele, O.A., Ata, O.: Water absorption properties of sawdust lignin stabilised compressed laterite bricks. Case Stud. Constr. Mater. 9, e00187 (2018)

    Google Scholar 

  189. Weber, M., Weber, M., Weber, V.: Phenol. In: Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a19_299.pub3 (2020)

  190. Nehez, N.: Lignin-based friction material. European Patent Office: EP0856030A4, pp. 242–554 (1997)

  191. Çetin, N.S., Özmen, N.: Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: I. Organosolv lignin modified resins. Int. J. Adhes. Adhes. 22, 477–480 (2002)

    Google Scholar 

  192. Kosbar, L.L., Gelorme, J.D., Japp, R.M., Fotorny, W.T.: Introducing biobased materials into the electronics industry: developing a lignin-based resin for printed wiring boards. J. Ind. Ecol. 4, 93–105 (2001)

    Google Scholar 

  193. Upton, B.M., Kasko, A.M.: Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116, 2275–2306 (2016)

    Google Scholar 

  194. Koike, T.: Progress in development of epoxy resin systems based on wood biomass in Japan. Polym. Eng. Sci. 52, 701–717 (2012)

    Google Scholar 

  195. Lora, J.: Industrial commercial lignins: sources, properties and applications. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites, pp. 225–271. Elsevier, New York (2008)

    Google Scholar 

  196. Belgacem, M.N., Gandini, A.: Materials from vegetable oils: major sources, properties and applications. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, pp. 39–66. Elsevier, New York (2008)

    Google Scholar 

  197. Arshanitsa, A., Ponomarenko, J., Dizhbite, T., Andersone, A., Gosselink, R.J.A., Van Der Putten, J., Lauberts, M., Telysheva, G.: Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J. Anal. Appl. Pyrolysis 103, 78–85 (2013)

    Google Scholar 

  198. Okolie, J.A., Henry, O.E., Epelle, E.I.: Determination of the antioxidant potentials of two different varieties of banana peels in two different solvents. Food Nutr. Sci. 7, 1253–1261 (2016)

    Google Scholar 

  199. Espinoza-Acosta, J.L., Torres-Chávez, P.I., Ramírez-Wong, B., López-Saiz, C.M., Montaño-Leyva, B.: Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioResources 11, 5452–5481 (2016)

    Google Scholar 

  200. Pan, X., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N.: Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54, 5806–5813 (2006)

    Google Scholar 

  201. Dong, X., Dong, M., Lu, Y., Turley, A., Jin, T., Wu, C.: Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind. Crops Prod. 34, 1629–1634 (2011)

    Google Scholar 

  202. El Hage, R., Perrin, D., Brosse, N.: Effect of the pre-treatment severity on the antioxidant properties of ethanol organosolv Miscanthus x giganteus lignin. Nat. Resourc 3, 29 (2012)

    Google Scholar 

  203. Azargohar, R., Nanda, S., Kozinski, J.A., Dalai, A.K., Sutarto, R.: Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125, 90–100 (2014)

    Google Scholar 

  204. Azargohar, R., Nanda, S., Dalai, A.K., Kozinski, J.A.: Physico-chemistry of biochars produced through steam gasification and hydro-thermal gasification of canola hull and canola meal pellets. Biomass Bioenergy 120, 458–470 (2019)

    Google Scholar 

  205. Kang, K., Nanda, S., Sun, G., Qiu, L., Gu, Y., Zhang, T., Zhu, M., Sun, R.: Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar. Energy 186, 115795 (2019)

    Google Scholar 

  206. Kang, K., Nanda, S., Lam, S.S., Zhang, T., Huo, L., Zhao, L.: Enhanced fuel characteristics and physical chemistry of microwave hydrochar for sustainable fuel pellet production via co-densification. Environ. Res. 109480 (2020)

  207. Mukherjee, A., Okolie, J.A., Abdelrasoul, A., Niu, C., Dalai, A.K.: Review of post-combustion carbon dioxide capture technologies using activated carbon. J. Environ. Sci. 83, 46–63 (2019)

    Google Scholar 

  208. Boonpoke, A., Chiarakorn, S., Laosiripojana, N., Towprayoon, S., Chidthaisong, A.: Synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity. J. Sustain. Environ. 2, 77–81 (2011)

    Google Scholar 

  209. Plaza, M.G., González, A.S., Pevida, C., Pis, J.J., Rubiera, F.: Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl. Energy 99, 272–279 (2012)

    Google Scholar 

  210. Zhang, X., Zhang, S.H., Yang, H.P., Shi, T., Chen, Y.Q., Chen, H.P.: Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenergy Res. 6, 1147–1153 (2013)

    Google Scholar 

  211. Yi, H., Zuo, Y., Liu, H., Tang, X., Zhao, S., Wang, Z., Gao, F., Zhang, B.: Simultaneous removal of SO2, NO, and CO2 on metal-modified coconut. Water. Air. Soil Pollut. 225, 1965 (2014)

    Google Scholar 

  212. Jain, S., Kumar, P., Vyas, R.K., Pandit, P., Dalai, A.K.: Adsorption optimization of acyclovir on prepared activated carbon. Can. J. Chem. Eng. 92, 1627–1635 (2014)

    Google Scholar 

  213. Shahkarami, S., Dalai, A.K., Soltan, J., Hu, Y., Wang, D.: Selective CO2 capture by activated carbons: Evaluation of the effects of precursors and pyrolysis process. Energy Fuels 29, 7433–7440 (2015)

    Google Scholar 

  214. Azargohar, R., Dalai, A.K.: Biochar as a precursor of activated carbon. Appl. Biochem. Biotechnol. 129–132, 762–773 (2006)

    Google Scholar 

  215. De, M., Azargohar, R., Dalai, A.K., Shewchuk, S.R.: Mercury removal by bio-char based modified activated carbons. Fuel 103, 570–578 (2013)

    Google Scholar 

  216. Bu, Q., Lei, H., Wang, L., Yadavalli, G., Wei, Y., Zhang, X., Zhu, L., Liu, Y.: Biofuel production from catalytic microwave pyrolysis of Douglas fir pellets over ferrum-modified activated carbon catalyst. J. Anal. Appl. Pyrolysis 112, 74–79 (2015)

    Google Scholar 

  217. Portet, C., Yushin, G., Gogotsi, Y.: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007)

    Google Scholar 

  218. Sharifuddin, S.A.B., Ismail, S.B., Abdullah, I., Mohamad, I., Mohammed, J.S.: Antibacterial evaluation of activated carbon cloth with Ag+ impregnated with ZnO nanoparticles. Res. J. Textile Apparel 23, 232–243 (2019)

    Google Scholar 

  219. Juurlink, D.N.: Activated charcoal for acute overdose: a reappraisal. British J. Clinic. Pharm. 81, 482–487 (2016)

    Google Scholar 

  220. Miriyala, N., Ouyang, D., Perrie, Y., Lowry, D., Kirby, D.J.: Activated carbon as a carrier for amorphous drug delivery: Effect of drug characteristics and carrier wettability. Eur. J. Pharm. Biopharm. 115, 197–205 (2017)

    Google Scholar 

  221. Nanda, S., Gong, M., Hunter, H.N., Dalai, A.K., Gökalp, I., Kozinski, J.A.: An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Process. Technol. 168, 84–96 (2017)

    Google Scholar 

  222. Azargohar, R., Nanda, S., Rao, B.V.S.K., Dalai, A.K.: Slow pyrolysis of deoiled Canola meal: Product yields and characterization. Energy Fuels 27, 5268–5279 (2013)

    Google Scholar 

  223. Nanda, S., Dalai, A.K., Pant, K.K., Gökalp, I., Kozinski, J.A.: An appraisal on biochar functionality and utility in agronomy. In: Konur, O. (ed.) Bioenergy and Biofuels, pp. 389–409. CRC Press, Florida (2018)

    Google Scholar 

  224. Fathy, N.A.: Carbon nanotubes synthesis using carbonization of pretreated rice straw through chemical vapor deposition of camphor. RSC Adv. 7, 28535–28541 (2017)

    Google Scholar 

  225. Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E.: Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)

    Google Scholar 

  226. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., Fischer, J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)

  227. Wang, Z., Ogata, H., Morimoto, S., Ortiz-Medina, J., Fujishige, M., Takeuchi, K., Muramatsu, H., Hayashi, T., Terrones, M., Hashimoto, Y., Endo, M.: Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon 94, 479–484 (2015)

    Google Scholar 

  228. Goodell, B., Xie, X., Qian, Y., Daniel, G., Peterson, M., Jellison, J.: Carbon nanotubes produced from natural cellulosic materials. J. Nanosci. Nanotechnol. 8, 2472–2474 (2008)

    Google Scholar 

  229. Zhu, J., Jia, J., Kwong, F.L., Ng, D.H.L., Tjong, S.C.: Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. Biomass Bioenergy 36, 12–19 (2012)

    Google Scholar 

  230. Bernd, M.G.S., Bragança, S.R., Heck, N., da Filho, L.C.P.: Silva Filho: Synthesis of carbon nanostructures by the pyrolysis of wood sawdust in a tubular reactor. J. Mater. Res. Technol. 6, 171–177 (2017)

    Google Scholar 

  231. Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001)

    Google Scholar 

  232. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes–the route toward applications. Science 297, 787–792 (2002)

    Google Scholar 

  233. Karfa, P., De, S., Majhi, K.C., Madhuri, R., Sharma, P.K.: Functionalization of carbon nanostructures. Compr. Nanosci. Nanotechnol. 26, 123–144 (2018)

    Google Scholar 

  234. Karousis, N., Suarez-Martinez, I., Ewels, C.P., Tagmatarchis, N.: Structure, properties, functionalization, and applications of carbon nanohorns. Chem. Rev. 116, 4850–4883 (2016)

    Google Scholar 

  235. Pagona, G., Mountrichas, G., Rotas, G., Karousis, N., Pispas, S., Tagmatarchis, N.: Properties, applications and functionalisation of carbon nanohorns. Int. J. Nanotechnol. 6, 176–195 (2008)

    Google Scholar 

  236. Zhu, S., Xu, G.: Single-walled carbon nanohorns and their applications. Nanoscale 2, 2538–2549 (2010)

    Google Scholar 

  237. Morgan, J.L.W., Strumillo, J., Zimmer, J.: Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493, 181–186 (2013)

    Google Scholar 

  238. Ullah, H., Santos, H.A., Khan, T.: Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23, 2291–2314 (2016)

    Google Scholar 

  239. Lin, S.P., Loira Calvar, I., Catchmark, J.M., Liu, J.R., Demirci, A., Cheng, K.C.: Biosynthesis, production and applications of bacterial cellulose. Cellulose 20, 2191–2219 (2013)

    Google Scholar 

  240. Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561–1603 (2001)

    Google Scholar 

  241. Hasan, N., Biak, D.R.A., Kamarudin, S.: Application of bacterial cellulose (BC) in natural facial scrub. Int. J. Adv. Sci. Eng. Inf. Technol. 2(272), 1–4 (2012)

    Google Scholar 

  242. Amnuaikit, T., Chusuit, T., Raknam, P., Boonme, P.: Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med. Devices (Auckl) 4, 77–81 (2011)

    Google Scholar 

  243. Almeida, I.F., Pereira, T., Silva, N.H.C.S., Gomes, F.P., Silvestre, A.J.D., Freire, C.S.R., Sousa Lobo, J.M., Costa, P.C.: Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 86, 332–336 (2014)

    Google Scholar 

  244. Lin, Y.C., Wey, Y.C., Lee, M.L., Lin P.C.: Cosmetic composition containing fragments of bacterial cellulose film and method for manufacturing thereof. United States Patent US20150216784A1 (2015)

  245. Songsurang, K., Pakdeebumrung, J., Praphairaksit, N., Muangsin, N.: Sustained release of amoxicillin from ethyl cellulose-coated amoxicillin/chitosan–cyclodextrin-based tablets. AAPS PharmSciTech 12, 35–45 (2011)

    Google Scholar 

  246. Trovatti, E., Freire, C.S.R., Pinto, P.C., Almeida, I.F., Costa, P., Silvestre, A.J.D., Neto, C.P., Rosado, C.: Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: In vitro diffusion studies. Int. J. Pharm. 435, 83–87 (2012)

    Google Scholar 

  247. Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A.: Bacterial cellulose as a material for wound treatment: properties and modifications: a review. Biotechnol. Adv. 33, 1547–1571 (2015)

    Google Scholar 

  248. Sun, B., Zhang, M., Shen, J., He, Z., Fatehi, P., Ni, Y.: Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 26, 2485–2501 (2019)

    Google Scholar 

  249. Weyell, P., Beekmann, U., Küpper, C., Dederichs, M., Thamm, J., Fischer, D., Kralisch, D.: Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr. Polym. 207, 1–10 (2019)

    Google Scholar 

  250. Tamahkar, E., Bakhshpour, M., Denizli, A.: Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. J. Biomater. Sci. Polym. Ed. 30, 450–461 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chairs (CRC) program for funding this bioenergy research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz A. Kozinski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okolie, J.A., Nanda, S., Dalai, A.K. et al. Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste Biomass Valor 12, 2145–2169 (2021). https://doi.org/10.1007/s12649-020-01123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01123-0

Keywords

Navigation