Skip to main content
Log in

Synthesis of Biodegradable Films Using Gamma Irradiation from Fish Waste

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Substantial waste is generated from fish processing industries causing pollution and health hazard. Hence, synthesizing biodegradable film from myofibrillar protein dispersion of fish waste was attempted which may serve as “Wealth from Waste”- an eco-friendly initiative. Film dispersions were gamma-irradiated at a dose of 10 (D10) and 25 kGy (D25) before casting and their physical properties were tested where film from non-irradiated dispersion served as control. The results showed control (D0) had minimum tensile strength and maximum elongation at break whereas D10 and D25 had comparable values. Opacity with yellowness increased proportionally with dose. Water solubility was found to be similar for D0 and D25 whereas D10 had the lowest value. Water vapour permeability was highest in D25 as compared to D0 and D10 and free sulfhydryl content was lowest in D10 as compared to D0 and D25. Corroborating all data, D10 was found to be better as compared to D0 and D25.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybeck, A.: Global food losses and food waste: extent, causes and prevention. FAO, Rome (2011)

    Google Scholar 

  2. Tsang, Y.F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y.S., Song, H., Kim, K.H., Kwon, E.E., Jeon, Y.J.: Production of bioplastic through food waste valorization. Environ. Int. 127, 625–644 (2019). https://doi.org/10.1016/j.envint.2019.03.076

    Article  Google Scholar 

  3. Gautam, R.K., Kakatkar, A.S., Karani, M.N.: Development of protein-based biodegradable films from fish processing waste. Int. J. Curr. Microbiol. Appl. Sci. 5, 878–888 (2016). https://doi.org/10.20546/ijcmas.2016.508.099

    Article  Google Scholar 

  4. Sasidharan, A., Venugopal, V.: Proteins and co-products from seafood processing discards: their recovery, functional properties and applications. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00812-9

    Article  Google Scholar 

  5. Rathod, P.H., Patel, J.C., Shah, M.R., Jhala, A.J.: Evaluation of gamma irradiation for bio-solid waste management. Int. J. Environ. Waste Manage. 2, 37–48 (2008). https://doi.org/10.1504/IJEWM.2008.016990

    Article  Google Scholar 

  6. Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M.L., Marques, A.: Hake proteins edible films incorporated with essential oils: physical, mechanical, antioxidant and ntibacterial properties. Food Hydrocoll. 30, 224–231 (2013). https://doi.org/10.1016/j.foodhyd.2012.05.019

    Article  Google Scholar 

  7. Saurabh, C.K., Gupta, S., Bahadur, J., Mazumder, S., Variyar, P.S., Sharma, A.: Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films. Carbohydr. Polym. 98, 1610–1617 (2013). https://doi.org/10.1016/j.carbpol.2013.07.041

    Article  Google Scholar 

  8. Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., Tanaka, M.: Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocoll. 20, 492–501 (2006)

    Article  Google Scholar 

  9. Venugopal, V., Doke, S.N., Nair, P.M.: Gelation of shark myofibrillar proteins by weak organic acids. Food Chem. 50, 185–190 (1994). https://doi.org/10.1016/0308-8146(94)90118-X

    Article  Google Scholar 

  10. Cuq, B., Gontard, N., Cuq, J.L., Guilbert, S.: Functional properties of myofibrillar protein-based biopackaging as affected by film thickness. J. Food Sci. 61, 580–584 (1996). https://doi.org/10.1111/j.1365-2621.1996.tb13163.x

    Article  Google Scholar 

  11. García, F.T., Sobral, P.J.D.A.: Effect of the thermal treatment of the filmogenic solution on the mechanical properties, color and opacity of films based on muscle proteins of two varieties of Tilapia. LWT - Food Sci. Technol. 38, 289–296 (2005). https://doi.org/10.1016/j.lwt.2004.06.002

    Article  Google Scholar 

  12. Kaewprachu, P., Osako, K., Rawdkuen, S.: Effects of plasticizers on the properties of fish myofibrillar protein film. J. Food Sci. Technol. 55, 3046–3055 (2018). https://doi.org/10.1007/s13197-018-3226-7

    Article  Google Scholar 

  13. Iwata, K., Ishizaki, S., Handa, A., Tanaka, M.: Preparation and characterization of edible films from fish water-soluble proteins. Fish. Sci. 66, 372–378 (2000)

    Article  Google Scholar 

  14. Cuq, B., Aymard, C., Cuq, J.-L., Guilbert, S.: Edible packaging films based on fish myofibrillar proteins: formulation and functional properties. J. Food Sci. 60, 1369–1374 (1995)

    Article  Google Scholar 

  15. Lee, M., Lee, S., Song, K.: Bin: effect of γ-irradiation on the physicochemical properties of soy protein isolate films. Radiat. Phys. Chem. 72, 35–40 (2005). https://doi.org/10.1016/j.radphyschem.2004.01.006

    Article  Google Scholar 

  16. Sabato, S.F., Nakamurakare, N., Sobral, P.J.A.: Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins. Radiat. Phys. Chem. 76, 1862–1865 (2007). https://doi.org/10.1016/j.radphyschem.2007.02.096

    Article  Google Scholar 

  17. Prodpran, T., Benjakul, S., Phatcharat, S.: Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein. Int. J. Biol. Macromol. 51, 774–782 (2012). https://doi.org/10.1016/j.ijbiomac.2012.07.010

    Article  Google Scholar 

  18. Shi, Y., Li, R.Y., Tu, Z.C., Ma, D., Wang, H., Huang, X.Q., He, N.: Effect of γ- irradiation on the physicochemical properties and structure of fish myofibrillar proteins. Radiat. Phys. Chem. 109, 70–72 (2015). https://doi.org/10.1016/j.radphyschem.2014.12.016

    Article  Google Scholar 

  19. Kuan, Y.H., Bhat, R., Patras, A., Karim, A.A.: Radiation processing of food proteins—a review on the recent developments. Trends Food Sci. Technol. 30, 105–120 (2013)

    Article  Google Scholar 

  20. Zhang, W., Xiao, S., Ahn, D.U.: Protein oxidation: basic principles and implications for meat quality. Crit. Rev. Food Sci. Nutr. 53, 1191–1201 (2013). https://doi.org/10.1080/10408398.2011.577540

    Article  Google Scholar 

  21. Lee, J., Yook, H., Lee, K., Kim, J., Kim, W., Byun, M.: Conformational changes of myosin by gamma irradiation. Radiat. Phys. Chem. 58, 271–277 (2000)

    Article  Google Scholar 

  22. Lee, Y.W., Song, K.B.: Effect of γ-irradiation on the molecular properties of myoglobin. J. Biochem. Mol. Biol. 35, 590–594 (2011). https://doi.org/10.5483/bmbrep.2002.35.6.590

    Article  Google Scholar 

  23. Rathod, N.B., Pagarkar, A.U., Pujari, K.H., Shingare, P.E., Satam, S.B., Phadke, G.G., Gaikwad, B.V.: Status of valuable components from Pangasius: a review. Int. J. Curr. Microbiol. Appl. Sci. 7, 2106–2120 (2018). https://doi.org/10.20546/ijcmas.2018.704.241

    Article  Google Scholar 

  24. Farkas, J., Mohácsi-Farkas, C.: History and future of food irradiation. Trends Food Sci. Technol. 22, 121–126 (2011). https://doi.org/10.1016/j.tifs.2010.04.002

    Article  Google Scholar 

  25. Ehlermann, D.A.E.: Wholesomeness of irradiated food. Radiat. Phys. Chem. (2016). https://doi.org/10.1016/j.radphyschem.2016.08.014

    Article  Google Scholar 

  26. Kakatkar, A.S., Sherekar, S.V., Venugopal, V.: Fish protein dispersion as a coating to prevent quality loss in processed fishery products. Fish. Technol. 41, 29–36 (2004)

    Google Scholar 

  27. Wilson, R.E.: Humidity control by means of sulfuric acid solutions, with critical compilation of vapor pressure data. J. Ind. Eng. Chem. 13, 326–331 (1921)

    Article  Google Scholar 

  28. Saurabh, C.K., Gupta, S., Bahadur, J., Mazumder, S., Variyar, P.S., Sharma, A.: Mechanical and barrier properties of guar gum based nano-composite films. Carbohydr. Polym. 124, 77–84 (2015). https://doi.org/10.1016/j.carbpol.2015.02.004

    Article  Google Scholar 

  29. Hoque, S., Benjakul, S., Prodpran, T.: Effects of hydrogen peroxide and Fenton’s reagent on the properties of film from cuttlefish (Sepia pharanois) skin gelatin. Food Chem. 128, 878–888 (2011). https://doi.org/10.1016/j.foodchem.2011.03.112

    Article  Google Scholar 

  30. Yin, S.W., Tang, C.H., Wen, Q.B., Yang, X.Q.: Properties of cast films from hemp (Cannabis sativa L.) and soy protein isolates. A comparative study. J. Agric. Food Chem. 55, 7399–7404 (2007). https://doi.org/10.1021/jf071117a

    Article  Google Scholar 

  31. American Society of Testing and Materials: ASTM D 882-02. Standard test method for tensile properties of thin plastic sheeting, pp. 1–10. ASTM International, West Conshohocken (2002)

    Google Scholar 

  32. Romani, V.P., Machado, A.V., Olsen, B.D., Martins, V.G.: Effects of pH modification in proteins from fish (Whitemouth croaker) and their application in food packaging films. Food Hydrocoll. 74, 307–314 (2018). https://doi.org/10.1016/j.foodhyd.2017.08.021

    Article  Google Scholar 

  33. Sobral, P.J.A., Menegalli, F.C., Hubinger, M.D., Roques, M.A.: Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll. 15, 423–432 (2001)

    Article  Google Scholar 

  34. Onofri, A.: Routine statistical analyses of field experiments by using an Excel extension. In: Proc. 6th Natl. Conf. Ital. Biometric Soc. La Stat. nelle Sci. della vita e dell’ambiente, pp. 93–96 (2007)

  35. Soliman, E.A., Eldin, M.S.M., Furuta, M.: Biodegradable zein-based films: influence of γ-irradiation on structural and functional properties. J. Agric. Food Chem. 57, 2529–2535 (2009). https://doi.org/10.1021/jf8032599

    Article  Google Scholar 

  36. Sabato, S.F., Lacroix, M.: Radiation effects on viscosimetry of protein based solutions. Radiat. Phys. Chem. 63, 357–359 (2002)

    Article  Google Scholar 

  37. Gergely, J., Gouvea, M.A., Karibian, D.: Fragmentation of myosin by chymotrypsin. J. Biol. Chem. 212, 165–177 (1954)

    Article  Google Scholar 

  38. Shawrang, P., Nikkhah, A., Zare-shahneh, A.: Effects of gamma irradiation on protein degradation of soybean meal in the rumen. Anim. Feed Sci. Technol. 134, 140–151 (2007). https://doi.org/10.1016/j.anifeedsci.2006.05.019

    Article  Google Scholar 

  39. Díaz, O., Candia, D., Cobos, Á.: Effects of ultraviolet radiation on properties of films from whey protein concentrate treated before or after film formation. Food Hydrocoll. (2015). https://doi.org/10.1016/j.foodhyd.2015.11.019

    Article  Google Scholar 

  40. Kaewprachu, P., Osako, K., Benjakul, S., Rawdkuen, S.: Effect of protein concentrations on the properties of fish myofibrillar protein based film compared with PVC film. J. Food Sci. Technol. (2016). https://doi.org/10.1007/s13197-016-2170-7

    Article  Google Scholar 

  41. Perkasa, D.P., Rasyid, A.: Effect of gamma irradiation on mechnical and thermal properties of fish gelatin film isolated from Lates calcarifer scales. Indones. J. Chem. 13, 28–35 (2013)

    Article  Google Scholar 

  42. Feng, X., Moon, S.H., Lee, H.Y., Uk, D.: Effect of irradiation on the parameters that influence quality characteristics of raw turkey breast meat. Radiat. Phys. Chem. 130, 40–46 (2017). https://doi.org/10.1016/j.radphyschem.2016.07.015

    Article  Google Scholar 

  43. Jo, C., Kang, H., Lee, N.Y., Kwon, J.H., Byun, M.W.: Pectin- and gelatin-based film: effect of gamma irradiation on the mechanical properties and biodegradation. Radiat. Phys. Chem. 72, 745–750 (2005). https://doi.org/10.1016/j.radphyschem.2004.05.045

    Article  Google Scholar 

  44. Benjakul, S., Artharn, A., Prodpran, T.: Properties of protein-based film from round scad (Decapterus maruadsi) muscle as influenced by fish quality. LWT - Food Sci. Technol. 41, 753–763 (2008). https://doi.org/10.1016/j.lwt.2007.05.015

    Article  Google Scholar 

  45. Kim, Y.S., Park, J.W., Choi, Y.J.: New approaches for the effective recovery of fish proteins and their physicochemical characteristics. Fish. Sci. 69, 1231–1239 (2003). https://doi.org/10.1111/j.0919-9268.2003.00750.x

    Article  Google Scholar 

  46. Benjakul, S., Bauer, F.: Physicochemical and enzymatic changes of cod muscle proteins subjected to different freeze-thaw cycles. J. Sci. Food Agric. 80, 1143–1150 (2000)

    Article  Google Scholar 

  47. Riebroy, S., Benjakul, S., Visessanguan, W., Tanaka, M., Erikson, U., Rustad, T.: Effect of irradiation on properties and storage stability of Som-fug produced from bigeye snapper. Food Chem. 103, 274–286 (2007). https://doi.org/10.1016/j.foodchem.2006.07.046

    Article  Google Scholar 

  48. Lee, S.L., Lee, M.S., Song, K.B.: Effect of gamma-irradiation on the physicochemical properties of gluten films. Food Chem. 92, 621–625 (2005). https://doi.org/10.1016/j.foodchem.2004.08.023

    Article  Google Scholar 

  49. Micard, V., Belamri, R., Morel, M.H., Guilbert, S.: Properties of chemically and physically treated wheat gluten films. J. Agric. Food Chem. 48, 2948–2953 (2000). https://doi.org/10.1021/jf0001785

    Article  Google Scholar 

  50. Pérez-Gago, M.B., Nadaud, P., Krochta, J.M.: Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. J. Food Sci. 64, 1034–1037 (1999)

    Article  Google Scholar 

  51. Hanson, S.R.A., Hasan, A., Smith, D.L., Smith, J.B.: The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp. Eye Res. 71, 195–207 (2000). https://doi.org/10.1006/exer.2000.0868

    Article  Google Scholar 

Download references

Acknowledgement

Authors acknowledge technical help provided by Mr Shabbir Alam.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PKM: methodology, investigation, formal analysis, writing-original draft. RKG: methodology, validation, formal analysis. VK: validation, formal analysis, resources. ASK: validation, resources, writing- review and editing. SC: conceptualization, project administration, supervision, writing- review and editing.

Corresponding author

Correspondence to Suchandra Chatterjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P.K., Gautam, R.K., Kumar, V. et al. Synthesis of Biodegradable Films Using Gamma Irradiation from Fish Waste. Waste Biomass Valor 12, 2247–2257 (2021). https://doi.org/10.1007/s12649-020-01143-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01143-w

Keywords

Navigation