Skip to main content
Log in

On Asymptotically Sharp Bi-Lipschitz Inequalities of Quasiconformal Mappings Satisfying Inhomogeneous Polyharmonic Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For two constants \(K\ge 1\) and \(K'\ge 0\), suppose that f is a \((K,K')\)-quasiconformal self-mapping of the unit disk \({\mathbb {D}}\), which satisfies the following: (1) the inhomogeneous polyharmonic equation \(\Delta ^{n}f=\Delta (\Delta ^{n-1} f)=\varphi _{n}\) in \({\mathbb {D}}\) \((\varphi _{n}\in {\mathcal {C}}(\overline{{\mathbb {D}}}))\), (2) the boundary conditions \(\Delta ^{n-1}f=\varphi _{n-1},~\ldots ,~\Delta ^{1}f=\varphi _{1}\) on \({\mathbb {T}}\) (\(\varphi _{j}\in {\mathcal {C}}({\mathbb {T}})\) for \(j\in \{1,\ldots ,n-1\}\) and \({\mathbb {T}}\) denotes the unit circle), and (3) \(f(0)=0\), where \(n\ge 2\) is an integer. The main aim of this paper is to prove that f is Lipschitz continuous, and, further, it is bi-Lipschitz continuous when \(\Vert \varphi _{j}\Vert _{\infty }\) are small enough for \(j\in \{1,\ldots ,n\}\). Moreover, the estimates are asymptotically sharp as \(K\rightarrow 1^{+}\), \(K'\rightarrow 0^{+}\) and \(\Vert \varphi _{j}\Vert _{\infty }\rightarrow 0^{+}\) for \(j\in \{1,\ldots ,n\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamowicz, T.: The geometry of planar \(p\)-harmonic mappings: convexity, level curves and the isoperimetric inequality. Ann. della Scoula Norm. Super. Pisa Cl. Sci. (5) 14, 453–478 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Adamowicz, T., Jääskeläinen, J., Koski, A.: The Radó–Kneser–Choquet theorem for p-harmonic mappings between Riemannian surfaces. Rev. Math. Iberoam. 36, 1–38 (2020)

    MATH  Google Scholar 

  3. Alessandrini, G., Nesi, V.: Invertible harmonic mappings, beyond kneser. Ann. della Scoula Norm. Super. Pisa Cl. Sci. (5) 8, 451–468 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Begehr, H.: Complex Analytic Methods for Partial Differential Equation. An Introductory Text. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  5. Chen, J., Li, P., Sahoo, S.K., Wang, X.: On the Lipschitz continuity of certain quasiregular mappings between smooth Jordan domain. Israel J. Math. 220, 453–478 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Chen, Sh, Li, P., Wang, X.: Schwarz-type Lemma, Landau-type Theorem, and Lipschitz-type space of solutions to inhomogeneous biharmonic equations. J. Geom. Anal. 29, 2469–2491 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Chen, Sh., Wang, X.: Bi-Lipschitz characteristic of quasiconformal self-mappings of the unit disk satisfying bi-harmonic equation. Indiana Univ. Math. J. (2020). http://www.iumj.indiana.edu/IUMJ/Preprints/8439.pdf

  8. Choquet, G.: Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques. Bull. Sci. Math. 69, 156–165 (1945)

    MathSciNet  MATH  Google Scholar 

  9. Cui, G., Li, Zh: A note on mori’s theorem of \(K\)-quasiconformal mappings. Acta Math. Sin. (N. S.) 9, 55–62 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Fehlmann, R., Vuorinen, M.: Mori’s theorem for \(n\)-dimensional quasiconformal mappings. Ann. Acad. Sci. Fenn. Math. 13, 111–124 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Finn, R., Serrin, J.: On the Hölder continuity of quasiconformal and elliptic mappings. Trans. Am. Math. Soc. 89, 1–15 (1958)

    MATH  Google Scholar 

  12. Gazzola, F., Grunau, H.-C., Sweer, G.: Polyharmonic Boundary Value Problems. Lecture Notes in Mathematics, vol. 1991. Springer, Berlin (2010)

    Google Scholar 

  13. Grunau, H-Ch., Sweers, G.: Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions. Math. Ann. 307, 589–626 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Halmos, P.R.: Measure Theory. D. Van Nostrand Company Inc, New York (1950)

    MATH  Google Scholar 

  15. Hayman, W.K., Horenblum, B.: Representation and uniqueness theorems for polyharmonic functions. J. Anal. Math. 60, 113–133 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Hengartner, W., Schober, G.: Harmonic mappings with given dilatation. J. London Math. Soc. 33, 473–483 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Ellipitic Equations. Dover Publications Inc, Mineola (2006)

    MATH  Google Scholar 

  18. Heinz, E.: On one-to-one harmonic mappings. Pac. J. Math. 9, 101–105 (1959)

    MathSciNet  MATH  Google Scholar 

  19. Hörmander, L.: Notions of Convexity, Progress in Mathematics, vol. 127. Birkhäuser Boston Inc, Boston (1994)

    MATH  Google Scholar 

  20. Kalaj, D.: On harmonic quasiconformal self-mappings of the unit ball. Ann. Acad. Sci. Fenn. Math. 33, 261–271 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Kalaj, D.: Quasiconformal and harmonic mappings between Jordan domains. Math. Z. 260, 237–252 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Kalaj, D.: On the quasiconformal self-mappings of the unit ball satisfying the Poisson differential equation. Ann. Acad. Sci. Fenn. Math. 36, 177–194 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Kalaj, D., Mateljević, M.: Inner estimate and quasiconformal harmonic maps between smooth domains. J. Anal. Math. 100, 117–132 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Kalaj, D., Mateljević, M.: On certain nonlinear elliptic PDE and quasiconformal maps between Euclidean surfaces. Potential Anal. 34, 13–22 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Kalaj, D., Mateljević, M.: \((K, K^{\prime })\)-quasiconformal harmonic mappings. Potential Anal. 36, 117–135 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Kalaj, D., Pavlović, M.: Boundary correspondence under harmonic quasiconformal diffeomorphisms of a half-plane. Ann. Acad. Sci. Fenn. Math. 30, 159–165 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Kalaj, D., Pavlović, M.: On quasiconformal self-mappings of the unit disk satisfying Poisson’s equation. Trans. Am. Math. Soc. 363, 4043–4061 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Kalaj, D., Saksman, E.: Quasiconformal maps with controlled Laplacian. J. Anal. Math. 137, 251–268 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Knežević, M., Mateljević, M.: On the quasi-isometries of harmonic quasiconformal mappings. J. Math. Anal. Appl. 334, 404–413 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Lai, B.S.: Radial singular solutions for a fourth order equation with negative exponents. J. Differ. Equ. 263, 8467–8480 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Lewy, H.: On the non-vanishing of Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42, 689–692 (1936)

    MathSciNet  MATH  Google Scholar 

  32. Li, P., Ponnusamy, S.: Representation formula and bi-Lipschitz continuity of solutions to inhomogeneous bi-harmonic Dirichlet problems in the unit disk. J. Math. Anal. Appl. 456, 1150–1175 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Manfredi, J.: \(p\)-harmonic functions in the plane. Proc. Am. Math. Soc. 103, 473–479 (1988)

    MathSciNet  MATH  Google Scholar 

  34. Martio, O.: On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I(425), 3–10 (1968)

    MATH  Google Scholar 

  35. Martio, O., Näkki, R.: Boundary Hölder continuity and quasiconformal mappings. J. Lond. Math. Soc. 44, 339–350 (1991)

    MATH  Google Scholar 

  36. Mateljević, M., Vuorinen, M.: On harmonic quasiconformal quasi-isometries. J. Inequal. Appl. (2010). https://doi.org/10.1155/2010/178732

    Article  MathSciNet  MATH  Google Scholar 

  37. Mayboroda, S., Maz’ya, V.: Regularity of solutions to the polyharmonic equation in general domains. Invent. Math. 196, 1–68 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Monr, A.: On an absolute constant in the theory of quasiconformal mappings. J. Math. Soc. Japan 8, 156–166 (1956)

    MathSciNet  Google Scholar 

  39. Nirenberg, L.: On nonlinear elliptic partial differential equations and Hölder continuity. Commun. Pure Appl. Math. 6, 103–156 (1953)

    MATH  Google Scholar 

  40. Olofsson, A.: Differential operators for a scale of Poisson type kernels in the unit disc. J. Anal. Math. 123, 227–249 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Partyka, M., Sakan, K.: On bi-Lipschitz type inequalities for quasicopnformal harmonic mappings. Ann. Acad. Sci. Fenn. Math. 32, 579–594 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Partyka, M., Sakan, K.: On an asymptotically sharp variant of Heinz’s inequality. Ann. Acad. Sci. Fenn. Math. 30, 167–182 (2005)

    MathSciNet  MATH  Google Scholar 

  43. Pavlović, M.: Boundary correspondence under harmonic qusiconformal homeomorphisms of the unit disk. Ann. Acad. Sci. Fenn. Math. 27, 365–372 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Qiu, S.: On Mori’s theorem in quasiconformal theory. Acta Math. Sin. (N.S.) 13, 35–44 (1997)

    MathSciNet  MATH  Google Scholar 

  45. Talvila, E.: Necessary and sufficient conditions for differentialting under the integral sign. Am. Math. Monthly 108, 544–548 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Zhong, D., Tu, H.: Heinz type inequalities for mappings satisfying Poisson’s equation. Indag. Math. 30, 98–105 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Zhong, D., Zhou, Y., Yuan, W.: Heinz-type inequality and bi-Lipschitz continuity for quasiconformal mappings satisfying inhomogeneous biharmonic equations. Math. Meth. Appl. Sci. (2019). https://doi.org/10.1002/mma.5611

  48. Zygmund, A.: Trigonometrical Series, 2nd edn. Chelsea Publishing Co., New York (1952)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for her/his comments and suggestions. This research was partly supported by the exchange project for the third regular session of the China-Montenegro Committee for Cooperation in Science and Technology (No. 3-13), the Hunan Provincial Education Department Outstanding Youth Project (No. 18B365), the Science and Technology Plan Project of Hengyang City (No. 2018KJ125), the National Natural Science Foundation of China (No. 11571216), the Science and Technology Plan Project of Hunan Province (No. 2016TP1020), the Science and Technology Plan Project of Hengyang City (No. 2017KJ183), and the Application-Oriented Characterized Disciplines, Double First-Class University Project of Hunan Province (Xiangjiaotong [2018]469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Kalaj, D. On Asymptotically Sharp Bi-Lipschitz Inequalities of Quasiconformal Mappings Satisfying Inhomogeneous Polyharmonic Equations. J Geom Anal 31, 4865–4905 (2021). https://doi.org/10.1007/s12220-020-00460-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00460-9

Keywords

Mathematics Subject Classification

Navigation