Skip to main content
Log in

Control of polymorphism in solution-processed organic thin film transistors by self-assembled monolayers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Polymorphism of organic semiconductor films is of key importance for the performance of organic thin film transistors (OTFTs). Herein, we demonstrate that the polymorphism of solution-processed organic semiconductors in thin film transistors can be controlled by finely tuning the surface nanostructures of substrates with self-assembled monolayers (SAMs). It is found that the SAMs of 12-cyclohexyldodecylphosphonic acid (CDPA) and 12-phenyldodecylphosphonic acid (PhDPA) induce different polymorphs in the dip-coated films of 2-dodecyl[1]benzothieno[3,2-b][1]benzothiophene (BTBT-C12). The film of BTBT-C12 on CDPA exhibits field effect mobility as high as 28.1 cm2 V−1 s−1 for holes, which is higher than that of BTBT-C12 on PhDPA by three times. The high mobility of BTBT C12 on CDPA is attributable to the highly oriented films of BTBT C12 with a reduced in-plane lattice and high molecular alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Science, 2009, 326: 1516–1519

    CAS  PubMed  Google Scholar 

  2. Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao Z. Nat Mater, 2010, 9: 859–864

    CAS  PubMed  Google Scholar 

  3. Diao Y, Shaw L, Bao Z, Mannsfeld SCB. Energy Environ Sci, 2014, 7: 2145–2159

    CAS  Google Scholar 

  4. Liu K, Guo YL, Liu YQ. Sci China Tech Sci, 2019, 62: 1255–1276

    CAS  Google Scholar 

  5. Dong H, Fu X, Liu J, Wang Z, Hu W. Adv Mater, 2013, 25: 6158–6183

    CAS  PubMed  Google Scholar 

  6. Gao X, Zhao Z. Sci China Chem, 2015, 58: 947–968

    CAS  Google Scholar 

  7. Zhen YG, Dong HL, Jiang L, Hu WP. Chin Chem Lett, 2016, 27: 1330–1338

    CAS  Google Scholar 

  8. Chung H, Diao Y. J Mater Chem C, 2016, 4: 3915–3933

    CAS  Google Scholar 

  9. Riera-Galindo S, Tamayo A, Mas-Torrent M. ACS Omega, 2018, 3: 2329–2339

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z. Nature, 2011, 480: 504–508

    CAS  PubMed  Google Scholar 

  11. Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z. Nat Mater, 2013, 12: 665–671

    CAS  PubMed  Google Scholar 

  12. Chen J, Shao M, Xiao K, He Z, Li D, Lokitz BS, Hensley DK, Kilbey Ii SM, Anthony JE, Keum JK, Rondinone AJ, Lee WY, Hong S, Bao Z. Chem Mater, 2013, 25: 4378–4386

    CAS  Google Scholar 

  13. Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen J, Nordlund D, Toney MF, Huang J, Bao Z. Nat Commun, 2014, 5: 3005

    PubMed  Google Scholar 

  14. Hiszpanski AM, Baur RM, Kim B, Tremblay NJ, Nuckolls C, Woll AR, Loo YL. J Am Chem Soc, 2014, 136: 15749–15756

    CAS  PubMed  Google Scholar 

  15. Jones AOF, Geerts YH, Karpinska J, Kennedy AR, Resel R, Röthel C, Ruzié C, Werzer O, Sferrazza M. ACS Appl Mater Interfaces, 2015, 7: 1868–1873

    CAS  PubMed  Google Scholar 

  16. Wang H, Zhu F, Yang J, Geng Y, Yan D. Adv Mater, 2007, 19: 2168–2171

    CAS  Google Scholar 

  17. Li Z, Du J, Tang Q, Wang F, Xu JB, Yu JC, Miao Q. Adv Mater, 2010, 22: 3242–3246

    CAS  PubMed  Google Scholar 

  18. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Chem Rev, 2005, 105: 1103–1170

    CAS  PubMed  Google Scholar 

  19. Casalini S, Bortolotti CA, Leonardi F, Biscarini F. Chem Soc Rev, 2017, 46: 40–71

    CAS  PubMed  Google Scholar 

  20. Liu D, Miao Q. Mater Chem Front, 2018, 2: 11–21

    CAS  Google Scholar 

  21. Lee AY, Erdemir D, Myerson AS. Annu Rev Chem Biomol Eng, 2011, 2: 259–280

    CAS  PubMed  Google Scholar 

  22. Lee HS, Kim DH, Cho JH, Hwang M, Jang Y, Cho K. J Am Chem Soc, 2008, 130: 10556–10564

    CAS  PubMed  Google Scholar 

  23. Tang Q, Zhang D, Wang S, Ke N, Xu J, Yu JC, Miao Q. Chem Mater, 2009, 21: 1400–1405

    CAS  Google Scholar 

  24. Takimiya K, Osaka I, Mori T, Nakano M. Acc Chem Res, 2014, 47: 1493–1502

    CAS  PubMed  Google Scholar 

  25. Amin AY, Khassanov A, Reuter K, Meyer-Friedrichsen T, Halik M. J Am Chem Soc, 2012, 134: 16548–16550

    CAS  PubMed  Google Scholar 

  26. Iino H, Usui T, Hanna JI. Nat Commun, 2015, 6: 6828

    CAS  PubMed  PubMed Central  Google Scholar 

  27. He K, Li W, Tian H, Zhang J, Yan D, Geng Y, Wang F. ACS Appl Mater Interfaces, 2017, 9: 35427–35436

    CAS  PubMed  Google Scholar 

  28. Minemawari H, Tanaka M, Tsuzuki S, Inoue S, Yamada T, Kumai R, Shimoi Y, Hasegawa T. Chem Mater, 2017, 29: 1245–1254

    CAS  Google Scholar 

  29. Liu D, He Z, Su Y, Diao Y, Mannsfeld SCB, Bao Z, Xu J, Miao Q. AdvMater, 2014, 26: 7190–7196

    CAS  Google Scholar 

  30. Acton O, Acton BO, Ting GG, Shamberger PJ, Ohuchi FS, Ma H, Jen AKY. ACS Appl Mater Interfaces, 2010, 2: 511–520

    CAS  PubMed  Google Scholar 

  31. Hoque E, Derose JA, Hoffmann P, Mathieu HJ, Bhushan B, Cichomski M. J Chem Phys, 2006, 124: 174710

    CAS  PubMed  Google Scholar 

  32. Dubey M, Weidner T, Gamble LJ, Castner DG. Langmuir, 2010, 26: 14747–14754

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Acton O, Dubey M, Weidner T, O’Malley KM, Kim TW, Ting GG, Hutchins D, Baio JE, Lovejoy TC, Gage AH, Castner DG, Ma H, Jen AKY. Adv Funct Mater, 2011, 21: 1476–1488

    CAS  Google Scholar 

  34. Park JS, Vo AN, Barriet D, Shon YS, Lee TR. Langmuir, 2005, 21: 2902–2911

    CAS  PubMed  Google Scholar 

  35. Kwok DY, Neumann AW. Adv Colloid Interface Sci, 1999, 81: 167–249

    CAS  Google Scholar 

  36. Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T. J Am Chem Soc, 2007, 129: 15732–15733

    CAS  PubMed  Google Scholar 

  37. Yang TY, Wen W, Yin GZ, Li XL, Gao M, Gu YL, Li L, Liu Y, Lin H, Zhang XM, Zhao B, Liu TK, Yang YG, Li Z, Zhou XT, Gao XY. Nucl Sci Tech, 2015, 26: 020101

    Google Scholar 

  38. Chen H, Dong S, Bai M, Cheng N, Wang H, Li M, Du H, Hu S, Yang Y, Yang T, Zhang F, Gu L, Meng S, Hou S, Guo X. Adv Mater, 2015, 27: 2113–2120

    CAS  PubMed  Google Scholar 

  39. Mannebach EM, Spalenka JW, Johnson PS, Cai Z, Himpsel FJ, Evans PG. Adv Funct Mater, 2012, 23: 554–564

    Google Scholar 

  40. Liu J, Jiang L, Hu W, Liu Y, Zhu D. Sci China Chem, 2019, 62: 313–330

    CAS  Google Scholar 

  41. Deng W, Zhang X, Dong H, Jie J, Xu X, Liu J, He L, Xu L, Hu W, Zhang X. Mater Today, 2019, 24: 17–25

    CAS  Google Scholar 

  42. McCulloch I, Salleo A, Chabinyc M. Science, 2016, 352: 1521–1522

    CAS  PubMed  Google Scholar 

  43. Uemura T, Rolin C, Ke TH, Fesenko P, Genoe J, Heremans P, Takeya J. Adv Mater, 2016, 28: 151–155

    CAS  PubMed  Google Scholar 

  44. Sirringhaus H. Adv Mater, 2005, 17: 2411–2425

    CAS  Google Scholar 

  45. Bittle EG, Basham JI, Jackson TN, Jurchescu OD, Gundlach DJ. Nat Commun, 2016, 7: 10908

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu X, Jia R, Pan J, Zhang X, Jie J. Nanoscale Horiz, 2020, 5: 454–472

    CAS  PubMed  Google Scholar 

  47. Cho J, Mori T. Phys Rev Appl, 2016, 5: 064017

    Google Scholar 

  48. Wang J, Deng W, Wang W, Jia R, Xu X, Xiao Y, Zhang X, Jie J, Zhang X. Nano Res, 2019, 12: 2796–2801

    CAS  Google Scholar 

  49. Zhang X, Deng W, Lu B, Fang X, Zhang X, Jie J. Nanoscale Horiz, 2020, doi: https://doi.org/10.1039/D0NH00096E

  50. Li H, Wu J, Takahashi K, Ren J, Wu R, Cai H, Wang J, Xin HL, Miao Q, Yamada H, Chen H, Li H. J Am Chem Soc, 2019, 141: 10007–10015

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51603124, 51703042), the Shenzhen Sci & Tech Research Grant (JCYJ20180305124832322), the University Grants Committee of Hong Kong (AoE/P-03/08) and the Chinese University of Hong Kong (3132678). We thank Shanghai Synchrotron Radiation Facility (beamline BL14B1) for providing beam time and assistance during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danqing Liu or Qian Miao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Xiao, X., He, Z. et al. Control of polymorphism in solution-processed organic thin film transistors by self-assembled monolayers. Sci. China Chem. 63, 1221–1229 (2020). https://doi.org/10.1007/s11426-020-9793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9793-2

Keywords

Navigation