Skip to main content
Log in

High-performance all-polymer solar cells with only 0.47 eV energy loss

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The field of all-polymer solar cells (all-PSCs) has experienced rapid development during the past few years, mainly driven by the development of efficient polymer acceptors. However, the power conversion efficiencies (PCEs) of the all-PSCs are still limited by insufficient light absorption of the donor/acceptor blend and large energy loss in devices. We herein designed a polymer acceptor PYT1 constructed n-type molecular acceptor Y5-C20 as the key building block and blended it with a polymer donor PM6 to obtain an all-polymer photoactive layer. The optimized PM6:PYT1 all-PSCs achieved a record higher PCE of 13.43% with a very low energy loss of 0.47 eV and a photoresponse of up to 900 nm compared with the Y5-C20 based device with a best PCE of 9.42%. Furthermore, the PCEs of the PM6:PYT1 all-PSCs are relatively insensitive to the 1-chloronaphthalene (CN) additive contents and active layer thickness. Our results also highlight the effect of CN additive on PM6:PYT1 morphology, i.e., charge generation, and transport find an optimized balance, and radiative and non-radiative loss is simultaneously reduced in the blend. This work promotes the development of high-performance polymer acceptors and heralds a brighter future of all-PSCs for commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui C, Li Y. Energy Environ Sci, 2019, 12: 3225–3246

    CAS  Google Scholar 

  2. Yang J, Xiao B, Tang A, Li J, Wang X, Zhou E. Adv Mater, 2018, 31: 1804699

    Google Scholar 

  3. Guo J, Min J. Adv Energy Mater, 2019, 9: 1802521

    Google Scholar 

  4. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

  5. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Google Scholar 

  6. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    PubMed  PubMed Central  Google Scholar 

  7. Wang G, Melkonyan FS, Facchetti A, Marks TJ. Angew Chem Int Ed, 2018, 58: 4129–4142

    Google Scholar 

  8. Menke SM, Ran NA, Bazan GC, Friend RH. Joule, 2018, 2: 25–35

    CAS  Google Scholar 

  9. Huang W, Cheng P, Yang YM, Li G, Yang Y. Adv Mater, 2018, 30: 1705706

    Google Scholar 

  10. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    PubMed  CAS  Google Scholar 

  11. Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434

    PubMed  CAS  Google Scholar 

  12. Zhu L, Zhong W, Qiu C, Lyu B, Zhou Z, Zhang M, Song J, Xu J, Wang J, Ali J, Feng W, Shi Z, Gu X, Ying L, Zhang Y, Liu F. Adv Mater, 2019, 31: 1902899

    CAS  Google Scholar 

  13. Zhao R, Lin B, Feng J, Dou C, Ding Z, Ma W, Liu J, Wang L. Macromolecules, 2019, 52: 7081–7088

    CAS  Google Scholar 

  14. Yao H, Bai F, Hu H, Arunagiri L, Zhang J, Chen Y, Yu H, Chen S, Liu T, Lai JYL, Zou Y, Ade H, Yan H. ACS Energy Lett, 2019, 4: 417–422

    CAS  Google Scholar 

  15. Zhou N, Dudnik AS, Li TING, Manley EF, Aldrich TJ, Guo P, Liao HC, Chen Z, Chen LX, Chang RPH, Facchetti A, Olvera de la Cruz M, Marks TJ. J Am Chem Soc, 2016, 138: 1240–1251

    PubMed  CAS  Google Scholar 

  16. Jung J, Lee W, Lee C, Ahn H, Kim BJ. Adv Energy Mater, 2016, 6: 1600504

    Google Scholar 

  17. Chen D, Yao J, Chen L, Yin J, Lv R, Huang B, Liu S, Zhang ZG, Yang C, Chen Y, Li Y. Angew Chem Int Ed, 2018, 57: 4580–4584

    CAS  Google Scholar 

  18. Kolhe NB, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. Chem Mater, 2018, 30: 6540–6548

    CAS  Google Scholar 

  19. You H, Kim D, Cho HH, Lee C, Chong S, Ahn NY, Seo M, Kim J, Kim FS, Kim BJ. Adv Funct Mater, 2018, 28: 1803613

    Google Scholar 

  20. Yang J, Xiao B, Tajima K, Nakano M, Takimiya K, Tang A, Zhou E. Macromolecules, 2017, 50: 3179–3185

    CAS  Google Scholar 

  21. Liu M, Yang J, Yin Y, Zhang Y, Zhou E, Guo F, Zhao L. J Mater Chem A, 2018, 6: 414–422

    CAS  Google Scholar 

  22. Yang J, Yin Y, Chen F, Zhang Y, Xiao B, Zhao L, Zhou E. ACS Appl Mater Interfaces, 2018, 10: 23263–23269

    PubMed  CAS  Google Scholar 

  23. Li Y, Meng H, Liu T, Xiao Y, Tang Z, Pang B, Li Y, Xiang Y, Zhang G, Lu X, Yu G, Yan H, Zhan C, Huang J, Yao J. Adv Mater, 2019, 31: 1904585

    CAS  Google Scholar 

  24. Shi S, Chen P, Chen Y, Feng K, Liu B, Chen J, Liao Q, Tu B, Luo J, Su M, Guo H, Kim MG, Facchetti A, Guo X. Adv Mater, 2019, 31: 1905161

    CAS  Google Scholar 

  25. Meng Y, Wu J, Guo X, Su W, Zhu L, Fang J, Zhang ZG, Liu F, Zhang M, Russell TP, Li Y. Sci China Chem, 2019, 62: 845–850

    CAS  Google Scholar 

  26. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    CAS  Google Scholar 

  27. Hwang YJ, Earmme T, Courtright BAE, Eberle FN, Jenekhe SA. J Am Chem Soc, 2015, 137: 4424–4434

    PubMed  CAS  Google Scholar 

  28. Wu J, Meng Y, Guo X, Zhu L, Liu F, Zhang M. J Mater Chem A, 2019, 7: 16190–16196

    CAS  Google Scholar 

  29. Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2018, 12: 157–163

    Google Scholar 

  30. Kim SW, Wang Y, You H, Lee W, Michinobu T, Kim BJ. ACS Appl Mater Interfaces, 2019, 11: 35896–35903

    PubMed  CAS  Google Scholar 

  31. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    PubMed  CAS  Google Scholar 

  32. Yuan J, Zhang Y, Zhou L, Zhang C, Lau TK, Zhang G, Lu X, Yip HL, So SK, Beaupré S, Mainville M, Johnson PA, Leclerc M, Chen H, Peng H, Li Y, Zou Y. Adv Mater, 2019, 31: 1807577

    Google Scholar 

  33. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y. Nat Commun, 2019, 10: 570

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302

    Google Scholar 

  35. Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020–3033

    CAS  Google Scholar 

  36. Huo L, Liu T, Sun X, Cai Y, Heeger AJ, Sun Y. Adv Mater, 2015, 27: 2938–2944

    PubMed  CAS  Google Scholar 

  37. Moore JR, Albert-Seifried S, Rao A, Massip S, Watts B, Morgan DJ, Friend RH, McNeill CR, Sirringhaus H. Adv Energy Mater, 2011, 1: 230–240

    CAS  Google Scholar 

  38. Fabiano S, Chen Z, Vahedi S, Facchetti A, Pignataro B, Loi MA. J Mater Chem, 2011, 21: 5891–5896

    CAS  Google Scholar 

  39. Eisner FD, Azzouzi M, Fei Z, Hou X, Anthopoulos TD, Dennis TJS, Heeney M, Nelson J. J Am Chem Soc, 2019, 141: 6362–6374

    PubMed  CAS  Google Scholar 

  40. Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7: 1966

    CAS  Google Scholar 

  41. Ye L, Jiao X, Zhao W, Zhang S, Yao H, Li S, Ade H, Hou J. Chem Mater, 2016, 28: 6178–6185

    CAS  Google Scholar 

  42. Sinha SK, Sirota EB, Garoff S, Stanley HB. Phys Rev B, 1988, 38: 2297–2311

    CAS  Google Scholar 

  43. Min J, Luponosov YN, Gasparini N, Richter M, Bakirov AV, Shcherbina MA, Chvalun SN, Grodd L, Grigorian S, Ameri T, Ponomarenko SA, Brabec CJ. Adv Energy Mater, 2015, 5: 1500386

    Google Scholar 

  44. Rau U. Phys Rev B, 2007, 76: 085303

    Google Scholar 

  45. Deibel C, Strobel T, Dyakonov V. Adv Mater, 2010, 22: 4097–4111

    PubMed  CAS  Google Scholar 

  46. Sun R, Guo J, Wu Q, Zhang Z, Yang W, Guo J, Shi M, Zhang Y, Kahmann S, Ye L, Jiao X, Loi MA, Shen Q, Ade H, Tang W, Brabec CJ, Min J. Energy Environ Sci, 2019, 12: 3118–3132

    CAS  Google Scholar 

  47. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F. Adv Energy Mater, 2018, 8: 1801352

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21702154, 51773157), and the opening projects of Key Laboratory of Materials Processing and Mold and Beijing National Laboratory for Molecular Sciences (BNLMS201905). This work was performed in part on the SAXS/WAXS beamline at the Australian Synchrotron, part of ANSTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Min.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Wang, W., Wang, T. et al. High-performance all-polymer solar cells with only 0.47 eV energy loss. Sci. China Chem. 63, 1449–1460 (2020). https://doi.org/10.1007/s11426-020-9785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9785-7

Keywords

Navigation