Skip to main content
Log in

The first application of isoindigo-based polymers in non-fullerene organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Although isoindigo (IID)-based polymers can realize high charge mobility, these materials are currently confined to fullerene-based organic solar cells (OSCs). Herein, we designed a pair of alternative D-π-A type copolymers, PE71 and PE72, to expand the application in non-fullerene OSCs, where benzo[1,2-b:4,5-b′]thiophene (BDT), thieno[3,2-b]thiophene (TT) and IID units were used as D, A and π-bridge, respectively. The aim of optimizing the length of alkyl chains on TT bridge is to ensure polymer solubility, crystallinity as well as miscibility with acceptor molecules. We find that PE71 and PE72 exhibit similar optical and electronic properties, but PE71 with shorter hexyl chain tends to aggregate into fiber-like structure. In the end, Y6 is selected as the electron acceptor because of suitable energy levels and complementary absorption spectrum. Finally, PE71:Y6 device realizes a power conversion efficiency (PCE) of 12.03%, which is obviously higher than that of PE72:Y6 device (9.74%) and is also the highest value for IID-based photovoltaic polymers. The charge transport, molecular aggregation, film morphology and energy loss analysis were systematically investigated. The improved photovoltaic performance of PE71:Y6 mainly originates from the better interpenetrating network structure toward facilitating exciton seperation and free charge carrier transportation. Our results indicate that IID-based D-π-A polymers can also be utilized in non-fullerene OSCs and the alkyl chains on the thieno [3,2-b]thiophene π-bridge have a vital effect on the photovoltaic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    CAS  Google Scholar 

  2. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027

    CAS  Google Scholar 

  3. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

  4. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    CAS  Google Scholar 

  5. Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I. Acc Chem Res, 2015, 48: 2803–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao B, Zhang Q, Li G, Du M, Geng Y, Sun X, Tang A, Liu Y, Guo Q, Zhou E. Sci China Chem, 2020, 63: 254–264

    CAS  Google Scholar 

  7. Cai Y, Huo L, Sun Y. Adv Mater, 2017, 29: 1605437

    Google Scholar 

  8. Dang D, Yu D, Wang E. Adv Mater, 2019, 31: 1807019

    Google Scholar 

  9. Geng Y, Tang A, Tajima K, Zeng Q, Zhou E. J Mater Chem A, 2019, 7: 64–96

    CAS  Google Scholar 

  10. Song J, Bo Z. Sci China Chem, 2019, 62: 9–13

    CAS  Google Scholar 

  11. Svensson M, Zhang F, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganäs O, Andersson MR. Adv Mater, 2003, 15: 988–991

    CAS  Google Scholar 

  12. Zhou E, Nakamura M, Nishizawa T, Zhang Y, Wei Q, Tajima K, Yang C, Hashimoto K. Macromolecules, 2008, 41: 8302–8305

    CAS  Google Scholar 

  13. Zhou E, Cong J, Hashimoto K, Tajima K. Macromolecules, 2013, 46: 763–768

    CAS  Google Scholar 

  14. Wang X, Tang A, Chen F, Zhou E. Macromolecules, 2018, 51: 4598–4607

    CAS  Google Scholar 

  15. Wadsworth A, Ashraf RS, Abdelsamie M, Pont S, Little M, Moser M, Hamid Z, Neophytou M, Zhang W, Amassian A, Durrant JR, Baran D, McCulloch I. ACS Energy Lett, 2017, 2: 1494–1500

    CAS  Google Scholar 

  16. Price SC, Stuart AC, Yang L, Zhou H, You W. J Am Chem Soc, 2011, 133: 4625–4631

    CAS  PubMed  Google Scholar 

  17. Min J, Zhang ZG, Zhang S, Li Y. Chem Mater, 2012, 24: 3247–3254

    CAS  Google Scholar 

  18. Chen Y, Geng Y, Tang A, Wang X, Sun Y, Zhou E. Chem Commun, 2019, 55: 6708–6710

    CAS  Google Scholar 

  19. Tang A, Song W, Xiao B, Guo J, Min J, Ge Z, Zhang J, Wei Z, Zhou E. Chem Mater, 2019, 31: 3941–3947

    CAS  Google Scholar 

  20. Wang T, Sun R, Xu S, Guo J, Wang W, Guo J, Jiao X, Wang J, Jia S, Zhu X, Li Y, Min J. J Mater Chem A, 2019, 7: 14070–14078

    CAS  Google Scholar 

  21. Tang A, Zhang Q, Du M, Li G, Geng Y, Zhang J, Wei Z, Sun X, Zhou E. Macromolecules, 2019, 52: 6227–6233

    CAS  Google Scholar 

  22. Guo X, Facchetti A, Marks TJ. Chem Rev, 2014, 114: 8943–9021

    CAS  PubMed  Google Scholar 

  23. Meng H, Li Y, Pang B, Li Y, Zhan C, Huang J. J Mater Chem C, 2019, 7: 8442–8449

    CAS  Google Scholar 

  24. Du M, Chen Y, Li J, Geng Y, Ji H, Li G, Tang A, Guo Q, Zhou E. J Phys Chem C, 2020, 124: 230–236

    CAS  Google Scholar 

  25. Gedefaw D, Prosa M, Bolognesi M, Seri M, Andersson MR. Adv Energy Mater, 2017, 7: 1700575

    Google Scholar 

  26. Zhou E, Cong J, Tajima K, Hashimoto K. Chem Mater, 2010, 22: 4890–4895

    CAS  Google Scholar 

  27. Yang J, Cong P, Chen L, Wang X, Li J, Tang A, Zhang B, Geng Y, Zhou E. ACS Macro Lett, 2019, 8: 743–748

    Google Scholar 

  28. Yuan J, Zhang Y, Zhou L, Zhang C, Lau T, Zhang G, Lu X, Yip H, So SK, Beaupré S, Mainville M, Johnson PA, Leclerc M, Chen H, Peng H, Li Y, Zou Y. Adv Mater, 2019, 31: 1807577

    Google Scholar 

  29. Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z’, Hou J. Macromolecules, 2012, 45: 9611–9617

    CAS  Google Scholar 

  30. Huo L, Liu T, Fan B, Zhao Z, Sun X, Wei D, Yu M, Liu Y, Sun Y. Adv Mater, 2015, 27: 6969–6975

    CAS  PubMed  Google Scholar 

  31. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    PubMed  PubMed Central  Google Scholar 

  32. Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442–4453

    CAS  Google Scholar 

  33. Lan L, Chen Z, Hu Q, Ying L, Zhu R, Liu F, Russell TP, Huang F, Cao Y. Adv Sci, 2016, 3: 1600032

    Google Scholar 

  34. Fan B, Du X, Liu F, Zhong W, Ying L, Xie R, Tang X, An K, Xin J, Li N, Ma W, Brabec CJ, Huang F, Cao Y. Nat Energy, 2018, 3: 1051–1058

    CAS  Google Scholar 

  35. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    CAS  Google Scholar 

  36. Stalder R, Mei J, Reynolds JR. Macromolecules, 2010, 43: 8348–8352

    CAS  Google Scholar 

  37. Wang E, Ma Z, Zhang Z, Vandewal K, Henriksson P, Inganas O, Zhang F, Andersson MR. J Am Chem Soc, 2011, 133: 14244–14247

    CAS  PubMed  Google Scholar 

  38. Ma Z, Sun W, Himmelberger S, Vandewal K, Tang Z, Bergqvist J, Salleo A, Andreasen JW, Inganäs O, Andersson MR, Müller C, Zhang F, Wang E. Energy Environ Sci, 2014, 7: 361–369

    CAS  Google Scholar 

  39. Deng Y, Liu J, Wang J, Liu L, Li W, Tian H, Zhang X, Xie Z, Geng Y, Wang F. Adv Mater, 2014, 26: 471–476

    CAS  PubMed  Google Scholar 

  40. Liao SF, Chen CT, Chao CY. ACS Macro Lett, 2017, 6: 969–974

    CAS  Google Scholar 

  41. Liao SF, Lu CF, Fenta AD, Chen CT, Chao CY, Su WF. J Mater Chem A, 2019, 7: 21309–21320

    CAS  Google Scholar 

  42. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Google Scholar 

  43. Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302

    Google Scholar 

  44. Fan B, Zeng Z, Zhong W, Ying L, Zhang D, Li M, Peng F, Li N, Huang F, Cao Y. ACS Energy Lett, 2019, 4: 2466–2472

    CAS  Google Scholar 

  45. Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2020, 63: 265–271

    CAS  Google Scholar 

  46. Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397–7457

    CAS  PubMed  Google Scholar 

  47. Tang A, Xiao B, Chen F, Zhang J, Wei Z, Zhou E. Adv Energy Mater, 2018, 8: 1801582

    Google Scholar 

  48. McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF. Nat Mater, 2006, 5: 328-

    CAS  PubMed  Google Scholar 

  49. Zhu L, Wang M, Li B, Jiang C, Li Q. J Mater Chem A, 2016, 4: 16064–16072

    CAS  Google Scholar 

  50. Nakano K, Chen Y, Xiao B, Han W, Huang J, Yoshida H, Zhou E, Tajima K. Nat Commun, 2019, 10: 2520

    PubMed  PubMed Central  Google Scholar 

  51. Vandewal K, Ma Z, Bergqvist J, Tang Z, Wang E, Henriksson P, Tvingstedt K, Andersson MR, Zhang F, Inganäs O. Adv Funct Mater, 2012, 22: 3480–3490

    CAS  Google Scholar 

  52. Proctor CM, Kuik M, Nguyen TQ. Prog Polym Sci, 2013, 38: 1941–1960

    CAS  Google Scholar 

  53. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV. Phys Rev B, 2010, 81: 125204

    Google Scholar 

  54. Li T, Benduhn J, Qiao Z, Liu Y, Li Y, Shivhare R, Jaiser F, Wang P, Ma J, Zeika O, Neher D, Mannsfeld SCB, Ma Z, Vandewal K, Leo K. J Phys Chem Lett, 2019, 10: 2684–2691

    CAS  PubMed  Google Scholar 

  55. Vandewal K, Benduhn J, Nikolis VC. Sustain Energy Fuels, 2018, 2: 538–544

    CAS  Google Scholar 

  56. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J, Watson T, Bryant D, Nelson J. Phys Rev Appl, 2015, 4: 014020

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0206600), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (QYZDB-SSW-SLH033), the National Natural Science Foundation of China (NSFC, 51673048, 21875052) and the Natural Science Foundation of Shanghai (19ZR1401400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfang Geng, Yanming Sun, Zaifei Ma or Erjun Zhou.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., An, N., Wu, H. et al. The first application of isoindigo-based polymers in non-fullerene organic solar cells. Sci. China Chem. 63, 1262–1271 (2020). https://doi.org/10.1007/s11426-020-9777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9777-1

Keywords

Navigation