Skip to main content
Log in

On Hyperbolic Affine Generalized Infinite Iterated Function Systems

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide alternative characterizations of hyperbolic affine generalized infinite iterated function systems. More precisely, we prove that, for such a system \({\mathcal {F}}=((X,\left\| .\right\| ),(f_{i})_{i\in I})\), among others, the following statements are equivalent: (a) \({\mathcal {F}}\) is hyperbolic. (b) \( {\mathcal {F}}\) has attractor. (c) \({\mathcal {F}}\) is strictly topologically contractive. (d) \({\mathcal {F}}\) is uniformly point-fibred. In this way we generalize the result from the paper by Miculescu and Mihail (J Math Anal Appl 407:56–68, 2013). More equivalent statements are given for the particular case when I is finite and X is finite dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkins, R., Barnsley, M., Vince, A., Wilson, D.: A characterization of hyperbolic affine iterated function systems. Topology Proc. 36, 189–211 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Barnsley, M.F.: Fractals Everywhere. Academic Press Professional, Boston (1993)

    MATH  Google Scholar 

  3. Dumitru, D.: Attractors of infinite iterated function systems containing contraction type functions. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Mat. N.S. 59, 281–298 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Dumitru, D., Ioana, L., Sfetcu, R.C., Strobin, F.: Topological version of generalized infinite iterated function systems. Chaos Solitons Fractals 71, 78–90 (2015)

    Article  MathSciNet  Google Scholar 

  5. Fernau, H.: Infinite iterated function systems. Math. Nachr. 170, 79–91 (1994)

    Article  MathSciNet  Google Scholar 

  6. Gwóźdź-Łukowska, G., Jachymski, J.: The Hutchinson–Barnsley theory for infinite iterated function systems. Bull. Aust. Math. Soc. 72, 441–454 (2005)

    Article  MathSciNet  Google Scholar 

  7. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  8. Jaksztas, L.: Infinite iterated function systems depending on a parameter. Bull. Pol. Acad. Sci. Math. 55, 105–122 (2007)

    Article  MathSciNet  Google Scholar 

  9. Jaros, P., Maślanka, Ł., Strobin, F.: Algorithms generating images of attractors of generalized iterated function systems. Numer. Algorithms 73, 477–499 (2016)

    Article  MathSciNet  Google Scholar 

  10. Kameyama, A.: Distances on topological self-similar sets and the kneading determinants. J. Math. Kyoto Univ. 40, 603–674 (2000)

    Article  MathSciNet  Google Scholar 

  11. Klimek, M., Kosek, M.: Generalized iterated function systems, multifunctions and Cantor sets. Ann. Polon. Math. 96, 25–41 (2009)

    Article  MathSciNet  Google Scholar 

  12. Leśniak, K.: Infinite iterated function systems: a multivalued approach. Bull. Pol. Acad. Sci. Math. 52, 1–8 (2004)

    Article  MathSciNet  Google Scholar 

  13. Lipscomb, S.L.: Fractals and Universal Spaces in Dimension Theory. Springer, Berlin (2009)

    Book  Google Scholar 

  14. Mauldin, R.D.: Infinite Iterated Function Systems: Theory and Applications, Progress in Probability, vol. 37, pp. 91–110. Birkhäuser Verlag, Basel (1995)

    MATH  Google Scholar 

  15. Mauldin, D., Urbański, M.: Dimensions and measures in infinite iterated function systems. Proc. Lond. Math. Soc. 73, 105–154 (1996)

    Article  MathSciNet  Google Scholar 

  16. Mendivil, F.: A generalization of IFS with probabilities to infinitely many maps. Rocky Mt. J. Math. 28, 1043–1051 (1998)

    Article  MathSciNet  Google Scholar 

  17. Miculescu, R.: Generalized iterated function systems with place dependent probabilities. Acta Appl. Math. 130, 135–150 (2014)

    Article  MathSciNet  Google Scholar 

  18. Miculescu, R., Ioana, L.: Some connections between the attractors of an IIFS \(S\) and the attractors of the sub-IFSs of \(S\). Fixed Point Theory Appl. 2012, 141 (2012)

    Article  MathSciNet  Google Scholar 

  19. Miculescu, R., Mihail, A.: Lipscomb’s space \(\omega ^{A}\) is the attractor of an infinite IFS containing affine transformations of \(l^{2}(A)\). Proc. Am. Math. Soc. 136, 587–592 (2008)

    Article  Google Scholar 

  20. Miculescu, R., Mihail, A.: Alternative characterization of hyperbolic affine infinite iterated function systems. J. Math. Anal. Appl. 407, 56–68 (2013)

    Article  MathSciNet  Google Scholar 

  21. Miculescu, R., Mihail, A.: On a question of A. Kameyama concerning self-similar metrics. J. Math. Anal. Appl. 422, 265–271 (2015)

    Article  MathSciNet  Google Scholar 

  22. Miculescu, R., Mihail, A.: Remetrization results for possibly infinite self-similar systems. Topol. Methods Nonlinear Anal. 47, 333–345 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Mihail, A., Miculescu, R.: Applications of fixed point theorems in the theory of generalized IFS. Fixed Point Theory Appl. 2008, 312876, 11 pp. https://doi.org/10.1155/2008/312876

  24. Mihail, A., Miculescu, R.: A generalization of the Hutchinson measure. Mediterr. J. Math. 6, 203–213 (2009)

    Article  MathSciNet  Google Scholar 

  25. Mihail, A., Miculescu, R.: Generalized IFSs on noncompact spaces. Fixed Point Theory Appl. 2010, 584215, 11 pp. https://doi.org/10.1155/2010/584215

  26. Mihail, A., Urziceanu, S.: On AGIIFSs having attractor. In: Talk Delivered at the 23rd International Conference on Difference Equations and Applications, July 24–July 28. Timişoara, Romania (2017)

  27. Moran, P.: Additive functions on intervals and Hausdorff measure. Proc. Camb. Philos. Soc. 42, 15–23 (1946)

    Article  MathSciNet  Google Scholar 

  28. Oliveira, E., Strobin, F.: Fuzzy attractors appearing from GIFZS. Fuzzy Set Syst. (2018). https://doi.org/10.1016/j.fss.2017.05.003

    Article  MathSciNet  MATH  Google Scholar 

  29. Secelean, N.A.: Countable Iterated Function Systems. Lambert Academic Publishing, Saarbrücken (2013)

    MATH  Google Scholar 

  30. Secelean, N.A.: Invariant measure associated with a generalized countable iterated function system. Mediterr. J. Math. 11, 361–372 (2014)

    Article  MathSciNet  Google Scholar 

  31. Secelean, N.A.: Generalized iterated function systems on the space \( l^{\infty }(X)\). J. Math. Anal. Appl. 410, 847–858 (2014)

    Article  MathSciNet  Google Scholar 

  32. Strobin, F.: Attractors of generalized IFSs that are not attractors of IFSs. J. Math. Anal. Appl. 422, 99–108 (2015)

    Article  MathSciNet  Google Scholar 

  33. Strobin, F., Swaczyna, J.: On a certain generalisation of the iterated function system. Bull. Aust. Math. Soc. 87, 37–54 (2013)

    Article  MathSciNet  Google Scholar 

  34. Strobin, F., Swaczyna, J.: A code space for a generalized IFS. Fixed Point Theory 17, 477–493 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Szarek, T., Wedrychowicz, S.: The OSC does not imply the SOCS for infinite iterated function systems. Proc. Am. Math. Soc. 133, 437–440 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewer’s valuable remarks and comments which lead to a substantial improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silviu-Aurelian Urziceanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihail, A., Urziceanu, SA. On Hyperbolic Affine Generalized Infinite Iterated Function Systems. Results Math 75, 111 (2020). https://doi.org/10.1007/s00025-020-01232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01232-1

Keywords

Mathematics Subject Classification

Navigation