Skip to main content
Log in

Effective and selective direct aminoformylation of nitroarenes utilizing palladium nanoparticles assisted by fibrous-structured silica nanospheres

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Palladium nanoparticles (~ 1–3 nm, 0.4 wt% Pd) were uniformly distributed over the surface of fibrous silica nanospheres (KCC-1) modified via aminopropyltriethoxysilane using a fast and cost-effective palladium (II) chloride reduction process. The Pd nanoparticles (Pd NPs) distribution over the ensuing catalyst Pd/KCC-1-NH2 showed much more uniform distribution, and smaller size compared with the tedious hydrothermal reduction method. The morphological, chemical, and size analyses of Pd/KCC-1-NH2 by BET, UV–Vis spectra, XRD, HR-TEM, EDS and XPS analysis revealed that the succeeding material consist of a distinct fibrous silica nanospheres support adorn with Pd NPs. The resultant nanocatalyst was tested for the one-step reductive aminoformylation of aromatic nitro compounds using formic acid. A wide range of substituted nitroarenes including electron withdrawing, releasing, sterically hindered and multifunctional groups have been converted to corresponding aryl formamide in quantitative yields (yields up to 98%) at moderate temperature (70 °C). Optimization study has proved that the 6 equivalent of formic acid is required and toluene was found to be the better solvent. The established practice is beneficial due to the use of formic acid as H2 source and formylating agent, easiness in handling of the catalyst and simple workup procedure with efficient catalyst reusability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Ono, The Nitro Group in Organic Synthesis (Wiley VCH, Weinheim, 2001)

    Google Scholar 

  2. S. Kotachi, Y. Tsuji, T. Kondo, Y. Watanabe, J. Chem. Soc. Chem. Commun. 549, 40 (1990)

    Google Scholar 

  3. G.R. Pettit, M.V. Kalnins, T.M.H. Liu, E.G. Thomas, K. Parent, J. Org. Chem. 26, 2563 (1961)

    CAS  Google Scholar 

  4. A. Jackson, O. Meth-Cohn, J. Chem. Soc. Chem. Commun. 13, 1319 (1995)

    Google Scholar 

  5. B.C. Chen, M.S. Bednarz, R. Zhao, J.E. Sundeen, P. Chen, Z. Shen, A.P. Skoumbourdis, J.C. Barrish, Tetrahedron Lett. 41, 5453 (2000)

    CAS  Google Scholar 

  6. D. Joulain, Flav. Fragr. J. 2, 149 (1987)

    CAS  Google Scholar 

  7. M.K. Basu, F.F. Becker, B.K. Banik, Tetrahedron Lett. 41, 5603 (2000)

    CAS  Google Scholar 

  8. M. Orlandi, D. Brenna, R. Harms, S. Jost, M. Benaglia, Org. Process Res. Dev. 22, 430 (2018)

    CAS  Google Scholar 

  9. F.F. Blicke, C.J. Lu, J. Am. Chem. Soc. 74, 3933 (1952)

    Google Scholar 

  10. P. Strazzolini, A.G. Giumanini, S. Cauci, Tetrahedron 46, 1081 (1990)

    CAS  Google Scholar 

  11. T. Kitagawa, J. Ito, C. Tsutsui, Chem. Pharm. Bull. 42, 1931 (1994)

    CAS  Google Scholar 

  12. P.G. Reddy, G.D.K. Kumar, S. Baskaran, Tetrahedron Lett. 41, 9149 (2000)

    Google Scholar 

  13. B. Desai, T.N. Danks, G. Wagner, Tetrahedron Lett. 46, 955 (2005)

    CAS  Google Scholar 

  14. M. Nasrollahzadeh, S.M. Sajadi, A. Hatamifard, J. Colloid Interface Sci. 460, 146 (2015)

    CAS  PubMed  Google Scholar 

  15. D. Habibi, M. Nasrollahzadeh, Comptes Rendus Chim. 16, 1008 (2013)

    CAS  Google Scholar 

  16. D. Habibi, M. Nasrollahzadeh, H. Sahebekhtiari, J. Mol. Catal. A Chem. 378, 148 (2013)

    CAS  Google Scholar 

  17. M. Nasrollahzadeh, N. Motahharifar, M. Sajjadi, A.M. Aghbolagh, M. Shokouhimehr, R.S. Varma, Green Chem. 21, 5144 (2019)

    CAS  Google Scholar 

  18. L. Wang, P. Li, Z. Wu, J. Yan, M. Wang, Y. Ding, Synthesis 13, 2001 (2003)

    Google Scholar 

  19. Y. Liu, Y. Lu, M. Prashad, O. Repic, T.J. Blacklock, Adv. Synth. Catal. 347, 217 (2005)

    CAS  Google Scholar 

  20. W.W. Hartman, J.B. Dickey, J.G. Stampfli, Organic Syntheses, vol. 2 (Wiley, New York, 1943), p. 175

    Google Scholar 

  21. T. Tsukinoki, H. Tsuzuki, Green Chem. 33, 337 (2001)

    Google Scholar 

  22. F.A. Khan, J. Dash, C. Sudheer, R.K. Gupta, Tetrahedron Lett. 44, 7783 (2003)

    CAS  Google Scholar 

  23. K. Bhaumik, K.G. Akamanchi, Can. J. Chem. 81, 197 (2003)

    CAS  Google Scholar 

  24. I. Pogorelic, M. Filipan-Litvic, S. Merkas, G. Ljubic, I. Cepanec, M. Litvic, J. Mol, Catal. A 274, 202 (2007)

    CAS  Google Scholar 

  25. P.M. Reis, B. Royo, Tetrahedron Lett. 50, 949 (2009)

    CAS  Google Scholar 

  26. A.A. Deshmukh, A.K. Prashar, A.K. Kinage, R. Kumar, R. Meijboom, Ind. Eng. Chem. Res. 49, 12180 (2010)

    CAS  Google Scholar 

  27. J. Wang, Z. Yuan, R. Nie, Z. Hou, X. Zheng, Ind. Eng. Chem. Res. 49, 4664 (2010)

    CAS  Google Scholar 

  28. F.A. Westerhaus, R.V. Jagadeesh, G. Wienhöfer, M.M. Pohl, J. Radnik, A.E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Brückner, M. Beller, Nat. Chem. 5, 537 (2013)

    CAS  PubMed  Google Scholar 

  29. P. Hrvatin, A.G. Sykes, Synlett 63, 1069 (1997)

    Google Scholar 

  30. I.J.B. Lin, C.S. Chang, J. Mol. Catal. 73, 167 (1992)

    CAS  Google Scholar 

  31. L. He, L.C. Wang, H. Sun, J. Ni, Y. Cao, H.Y. He, K.N. Fan, Angew. Chem. Int. Ed. 48, 9538 (2009)

    CAS  Google Scholar 

  32. T.V. Pratap, S. Baskaran, Tetrahedron Lett. 42, 1983 (2001)

    CAS  Google Scholar 

  33. K.Y. Lee, J.M. Kim, J.N. Kim, Bull. Korean Chem. Soc. 23, 1359 (2002)

    CAS  Google Scholar 

  34. G. Wienhöfer, I. Sorrobes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar, M. Beller, J. Am. Chem. Soc. 133, 12875 (2011)

    PubMed  Google Scholar 

  35. R.V. Jagadeesh, G. Wienhöfer, F.A. Westerhaus, A.E. Surkus, H. Junge, K. Junge, M. Beller, Chem. Eur. J. 17, 14375 (2011)

    CAS  PubMed  Google Scholar 

  36. G. Wienhöfer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar, M. Beller, Angew. Chem. Int. Ed. 51, 7794 (2012)

    Google Scholar 

  37. G. Wienhöfer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar, M. Beller, Angew. Chem. 124, 7914 (2012)

    Google Scholar 

  38. J.F. Quinn, C.E. Bryant, K.C. Golden, B.T. Gregg, Tetrahedron Lett. 51, 786 (2010)

    CAS  Google Scholar 

  39. I.D. Entwistle, A.E. Jackson, R.A.W. Johnstone, R.P. Telford, J. Chem. Soc. Perkin Trans. 1, 443 (1977)

    Google Scholar 

  40. B. Karimi, F. Mansouri, H. Vali, ChemPlusChem 80, 1750 (2015)

    CAS  PubMed  Google Scholar 

  41. L. Yu, Q. Zhang, S.S. Li, J. Huang, Y.M. Liu, H.Y. He, Y. Cao, Chemsuschem 8, 3029 (2015)

    CAS  PubMed  Google Scholar 

  42. A. Kamal, K.S. Reddy, B.R. Prasad, A.H. Babu, A.V. Ramana, Tetrahedron Lett. 45, 6517 (2004)

    CAS  Google Scholar 

  43. X. Du, M. Zheng, S. Chen, Z. Xu, Synlett 12, 1953 (2006)

    Google Scholar 

  44. X.B. Lou, L. He, Y. Qian, Y.M. Liu, Y. Cao, K.N. Fan, Adv. Synth. Catal. 353, 281 (2011)

    CAS  Google Scholar 

  45. Y. Wei, J. Wu, D. Xue, C. Wang, Z. Lin, Z. Zhang, G. Chen, J. Xiao, Synlett 25, 1295 (2014)

    Google Scholar 

  46. M.A. Kakroudi, F. Kazemi, B. Kaboudin, RSC Adv. 4, 52762 (2014)

    CAS  Google Scholar 

  47. R.B.N. Baig, S. Verma, M.N. Nadagouda, R.S. Varma, Green Chem. 18, 1019 (2016)

    Google Scholar 

  48. Y. Wang, Z. Zhan, Y. Zhou, M. Lei, L. Hu, Monatsh. Chem. 149, 527 (2018)

    CAS  Google Scholar 

  49. R. Soltani, A. Marjani, M. Hosseini, S. Shirazian, Chemosphere 239, 124735 (2020)

    CAS  PubMed  Google Scholar 

  50. R. Soltani, A. Marjani, M.R.S. Moguei, B. Rostami, S. Shirazian, J. Mol. Liq. 294, 111617 (2019)

    CAS  Google Scholar 

  51. F. Zarei, A. Marjani, R. Soltani, Eur. Polym. J. 119, 400 (2019)

    CAS  Google Scholar 

  52. R. Soltani, A. Marjani, M. Hosseini, S. Shirazian, J. Colloid Interface Sci. 570, 390 (2020)

    CAS  PubMed  Google Scholar 

  53. R. Soltani, A. Marjani, M. Hosseini, S. Shirazian, Chem. Eng. Technol. 43, 392 (2020)

    CAS  Google Scholar 

  54. Z.S. Qureshi, P.B. Sarawade, M. Albert, V. D’Elia, M.N. Hedhili, K. Köhler, J.M. Basset, ChemCatChem 7, 635 (2015)

    CAS  Google Scholar 

  55. Z.S. Qureshi, P.B. Sarawade, I. Hussain, H. Zhu, H. Al-Johani, D.H. Anjum, M.N. Hedhili, N. Maity, V. D’Elia, J.M. Basset, ChemCatChem 8, 1671 (2016)

    CAS  Google Scholar 

  56. M. Tagaya, T. Ikoma, Z. Xu, J. Tanaka, J. Inorg. Chem. 53, 6817 (2014)

    CAS  Google Scholar 

  57. A.L. Doadrio, J.M. Sanchez-Montero, J.C. Doadrio, A.J. Salinas, A.M. Vallet-Regi, Microporous Mesoporous Mater. 195, 43 (2014)

    CAS  Google Scholar 

  58. M. Nasrollahzadeh, S.M. Sajadi, E. Honarmand, M. Maham, New J. Chem. 39, 4745 (2015)

    CAS  Google Scholar 

  59. J. Liu, J. Hao, C. Hu, B. He, J. Xi, J. Xiao, S. Wang, Z. Bai, J. Phys. Chem. C 122, 2696 (2018)

    CAS  Google Scholar 

  60. S. Moussa, A.R. Siamaki, B.F. Gupton, M.S. El-Shall, ACS Catal. 2, 145 (2012)

    CAS  Google Scholar 

  61. A. Gniewek, A.M. Trzeciak, J.J. Ziołkowski, L. Kepinski, J. Wrzyszcz, W. Tylus, J. Catal. 229, 332 (2005)

    CAS  Google Scholar 

  62. G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou, T. Lu, J. Phys. Chem. C 117, 9826 (2013)

    CAS  Google Scholar 

  63. G. Fu, X. Jiang, L. Tao, Y. Chen, J. Lin, Y. Zhou, Y. Tang, T. Lu, Langmuir 29, 4413 (2013)

    CAS  PubMed  Google Scholar 

  64. G. Shitha, V.K. Amma, K. Bhai, G. Babu, C.R. Biju, J. Drug Deliv. Ther. 4, 122 (2014)

    CAS  Google Scholar 

  65. M. Salahuddin, A. Shaharyar, Mazumder. Arab. J. Chem. 10, S157 (2017)

    CAS  Google Scholar 

  66. V. Polshettiwar, M.N. Nadaguada, R.S. Varma, Chem. Commun. 62, 6318 (2008)

    Google Scholar 

  67. N.T.S. Phan, M. Van Der Sluys, C.W. Jones, Adv. Synth. Catal. 348, 609 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

The research reported in this publication was supported by center for refining and petrochemicals, King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyauddin S. Qureshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, Z.S., Jaseer, E.A. Effective and selective direct aminoformylation of nitroarenes utilizing palladium nanoparticles assisted by fibrous-structured silica nanospheres. Res Chem Intermed 46, 4279–4295 (2020). https://doi.org/10.1007/s11164-020-04206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04206-8

Keywords

Navigation