Skip to main content

Advertisement

Log in

TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ni-rich cathode material is one of the most promising materials for Li-ion batteries in electric vehicles. However, fading capacity, poor cyclic stability and high pH value are still major challenges, which suppress its practical application. In this study, spherical LiNi0.9Co0.08Al0.02O2 powders with 0.4 wt% TiO2 coating layer were prepared by impregnation–hydrolysis method. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) results show that TiO2 is uniformly coated on the surface of LiNi0.9Co0.08Al0.02O2 particle and slightly embedded into LiNi0.9Co0.08Al0.02O2 particles. After 100 cycles at 2.0C, 0.4 wt% TiO2-coated LiNi0.9Co0.08Al0.02O2 electrode delivers much higher discharge capacity retention (77.0%) than the pristine LiNi0.9Co0.08Al0.02O2 electrode (63.3%). The excellent cycling performance of 0.4 wt% TiO2-coated LiNi0.9Co0.08Al0.02O2 electrode at a high discharge ratio is due to a TiO2 coating layer which can effectively reduce the direct contact between cathode material and electrolyte, suppress the oxidation of electrolyte, improve electrical conductivity of the electrode and increase the stability of the structure.

Graphic abstract

With the increase of current density, TCNC sample clearly exhibits enhanced cycling performance with higher capacity retention, and the capacity retention of TCNC increases by 22% at 2.0 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ya L, Wang CZ. Review of remaining life prediction for lithium-ion batteries. Electronic Measurement Technology. 2018;41(4):29.

    Google Scholar 

  2. Zhao Y, Li XH, Ren HL, Yan FY, Chen XP, Meng MR, Sun R. Technical analysis of power lithium battery industry. Tianjin Sci Technol. 2017;44(12):81.

    Google Scholar 

  3. Zhai YW, Zhang JC, Zhao H, Hu ZB, Liu XF. Research progress of ternary layered oxide cathode materials for lithium ion batteries. J Eng Stud. 2017;9(6):523.

    Google Scholar 

  4. Gao WC, Pan FF, Xiang DB, Li YX. Research progress of LiMnPO4 cathode material for Li-ion batteries. Chin J Power Sources. 2018;42(3):445.

    Google Scholar 

  5. Qin JX, Jiang Q, Li H, Liu QQ, Duan AH, Lu XY. Research progress of the structural optimization design and electrochemical performances on the Li-rich manganese-based cathode materials. J Funct Mater. 2018;28(3):3007.

    Google Scholar 

  6. Min K, Cho E. Intrinsic origin of intra-granular cracking in Ni-rich layered oxide cathode materials. Phys Chem Chem Phys. 2018;20(14):9045.

    CAS  Google Scholar 

  7. Yoon CS, Ryu HH, Park GT, Kim JH, Kim KH, Sun YK. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries. J Mater Chem A. 2018;6(9):4126.

    CAS  Google Scholar 

  8. Yoon CS, Park KJ, Kim UH, Kang KH, Ryu HH, Sun YK. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem Mater. 2017;29(24):10436.

    CAS  Google Scholar 

  9. Yan XX. Research progress in the storage performance of Ni-rich LiNi1-xMxO2(M = Co, Mn, Al, x ≤ 0.4) cathode materials. Contemp Chem Ind. 2018;47(1):109.

    Google Scholar 

  10. Li X, Ge WJ, Wang H, Qu MZ. Research progress on the capacity fading mechanisms of high-nickel ternary layered oxide cathode materials. J Inorg Mater. 2018;47(1):109.

    Google Scholar 

  11. Liu L, Bao SS, He H, Sun WX, Yue B, Li JF. Research progress of Ni-rich ternary cathode materials for lithium ion batteries. Electron Comp Mater. 2017;36(12):58.

    Google Scholar 

  12. Lee MJ, Noh M, Park MH, Jo M, Kim H, Nam H, Cho J. The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures. J Mater Chem A. 2015;3(25):13453.

    CAS  Google Scholar 

  13. Zhang H, Li B, Wang J, Wu B, Fu T, Zhao J. Effects of Li2MnO3 coating on the high-voltage electrochemical performance and stability of Ni-rich layer cathode materials for lithium-ion batteries. RSC Adv. 2016;6(27):22625.

    CAS  Google Scholar 

  14. Zhou PF, Zhang Z, Meng HL, Lu YY, Cao J, Cheng FY, Tao ZL, Chen J. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries. Nanoscale. 2016;8(46):19263.

    CAS  Google Scholar 

  15. Chen S, He T, Su YF, Lu Y, Ban LY, Chen L, Zhang QY, Wang J, Chen RJ, Wu F. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode for lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9(35):29732.

    CAS  Google Scholar 

  16. Liao JY, Manthiram A. Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries. J Power Sources. 2015;282:462.

    Google Scholar 

  17. Li YG, Yu HF, Hu YJ, Jiang H, Li CZ. Surface-engineering of layered LiNi0.815Co0.15Al0.035O2 cathode material for high-energy and stable Li-ion batteries. J Energy Chem. 2018;27(2):559.

    Google Scholar 

  18. Jayasree SS, Nair S, Santhanagopalan D. Ultrathin TiO2 coating on LiCoO2 for improved electrochemical performance as Li-ion battery cathode. ChemistrySelect. 2018;3(10):2763.

    CAS  Google Scholar 

  19. Gan YP, Wang YS, Han JF, Zhang LY, Sun W, Xia Y, Huang H, Zhang J, Liang C, Zhang WK. Synthesis and electrochemical performance of nano TiO2(B)-coated Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for lithium-ion batteries. New J Chem. 2017;41(21):12962.

    CAS  Google Scholar 

  20. Zhang R, Wang XY, Wei SY, Wang X, Liu M, Hu H. Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries. J Alloy Compd. 2017;719:331.

    CAS  Google Scholar 

  21. Liu BS, Sui XL, Zhang SH, Yu FD, Xue Y, Zhang Y, Zhou YX, Wang ZB. Investigation on electrochemical performance of LiNi0.8Co0.15Al0.02O2 coated by heterogeneous layer of TiO2. J Alloys Compd. 2018;739:961.

    CAS  Google Scholar 

  22. Du R, Bi YJ, Yang WC, Peng Z, Liu M, Liu Y, Wu BM, Yang BC, Ding F, Wang DY. Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5 V. Ceram Int. 2015;41(5):7133.

    CAS  Google Scholar 

  23. Li X, Xie ZW, Liu WJ, Ge WJ, Wang H, Qu MZ. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.02O2. Electrochim Acta. 2015;174:11225.

    Google Scholar 

  24. Cho YH, Lee YS, Park SA, Lee Y, Cho J. LiNi0.8Co0.15Al0.02O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 precursors. Electrochim Acta. 2010;56(1):333.

    CAS  Google Scholar 

  25. Du K, Xie HB, Hu GR, Peng ZD, Cao YB, Yu F. Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying coating with nano-Al2O3. ACS Appl Mater Interfaces. 2017;8(27):17713.

    Google Scholar 

  26. Hu GR, Liu WM, Peng ZD, Du K, Cao YB. Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05OOH. J Power Sources. 2012;198:258.

    CAS  Google Scholar 

  27. Liu S, Chen X, Zhao J, Su J, Zhang C, Huang T, Wu J, Yu A. Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V. J Power Sources. 2018;374:149.

    CAS  Google Scholar 

  28. Kim HU, Song JH, Mumm DR, Song MY. Effects of Zn or Ti substitution for Ni on the electrochemical properties of LiNiO2. Ceramics Int. 2011;37(3):779.

    CAS  Google Scholar 

  29. Tang HW, Zhao FH, Chang ZR, Yuan XZ, Wang HJ. Synthesis and electrochemical properties of high density LiNi0.8Co0.2-xTixO2 for lithium-ion batteries. J Electrochem Soc. 2009;156(6):A478.

    CAS  Google Scholar 

  30. Zheng XB, Li XH, Wang ZX, Guo HJ, Huang ZJ, Yan GC, Wang D. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim Acta. 2016;191:832.

    CAS  Google Scholar 

  31. Deng ZF, Zhang ZA, Lai YQ, Liu J, Liu J, Li YX. A sulfur-carbon composite for lithium/sulfur battery based on activated vapor-grown carbon fiber. J Solid State Ionics. 2013;238:44.

    CAS  Google Scholar 

  32. Xu YD, Xiang W, Wu ZG, Xu CL, Li YC, Guo XD, Lv GP, Peng X, Zhong BH. Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. Electrochim Acta. 2018;268:358.

    CAS  Google Scholar 

  33. Tian LY, Liang K, Wem XF, Shi KY, Zheng JS. Enhanced cycling stability and rate capability of LiNi0.8Co0.15Al0.02O2 cathode material by a facile coating method. J Electroanal Chem. 2018;812:22.

    CAS  Google Scholar 

  34. Yang J, Xia Y. Suppressing the phase transition of the layered Ni-Rich oxidecathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl Mater Interfaces. 2016;8(2):1297.

    CAS  Google Scholar 

  35. Liu HD, Liu H, Seymour ID, Chernova N, Wiaderek KM, Trease NM, Hy S, Chen Y, An K, Zhang MH. Identifying the chemical and structural irreversibility in LiNi0.8Co0.15Al0.02O2-a model compound for classical layered intercalation. J Mater Chem A. 2018;6(9):4189.

    CAS  Google Scholar 

  36. Bobrikov IA, Samoylova NY, Ivanshina OY, Vasin RN, Sumnikov SV, Kornieieva KA, Balagurov AM. Abnormal phase-separated state of LixNi0.8Co0.15Al0.02O2 in the first charge: effect of electrode compaction. Electrochim Acta. 2018;265:726.

    CAS  Google Scholar 

  37. Zhong SW, Lai MZ, Yao WL, Li ZC. Synthesis and electrochemical properties of LiNi0.8CoxMn0.2-xO2 positive-electrode material for lithium-ion batteries. Electrochim Acta. 2016;212:343.

    CAS  Google Scholar 

  38. Chen D, Tan HT, Rui XH, Zhang Q, Feng YZ, Geng HB, Li CC, Huang SM, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.

    Google Scholar 

  39. Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Qin JL, Chen JX, Yuan H, Zhang Q, Huang JQ. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat. 2019;1(4):533.

    CAS  Google Scholar 

  40. Liu Y, Elzatahry AA, Luo W, Lan K, Zhang PF, Fan JW, Wei Y, Wang C, Deng YH, Zheng GF, Zhang F, Tang Y, Mai LQ, Zhao DY. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy. 2016;25:80.

    CAS  Google Scholar 

  41. Liu T, Zhao SX, Gou LL, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3-0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189.

    CAS  Google Scholar 

  42. Xu CC, Wang Y, Li L, Wang YI, Jiao LF, Yuan HT. Hydrothermal synthesis mechanism and electrochemical performance of LiMn0.6Fe0.4PO4 cathode material. Rare Met. 2019;38(1):29.

    CAS  Google Scholar 

  43. Duan JG, Dong P, Wang D, Li X, Xiao ZW, Zhang YJ, Hu GR. A facile structure design of LiNi0.90Co0.07Al0.03O2 as advanced cathode materials for lithium ion batteries via carbonation decomposition of NaAl(OH)4 solution. J Alloys Compd. 2018;739:335.

    CAS  Google Scholar 

  44. Bak SM, Nam KW, Chang W, Yu XQ, Hu EY, Hwang S, Stach EA, Kim KB, Chung KY, Yang XQ. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.02O2 cathode materials. Chem Mater. 2013;25(3):337.

    CAS  Google Scholar 

  45. Liu WM, Tang X, Qiu ML, Li GL, Deng JY, Huang XW. FeF3-coated LiNi0.8Co0.15Al0.02O2 cathode materials with improved electrochemical properties. Mater Lett. 2016;185:96.

    CAS  Google Scholar 

  46. Meng K, Wang ZX, Guo HJ, Li XH, Wang D. Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3. Electrochim Acta. 2016;211:822.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51701173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WW., Zhang, XJ., Si, JJ. et al. TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries. Rare Met. 40, 1719–1726 (2021). https://doi.org/10.1007/s12598-020-01483-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01483-5

Keywords

Navigation