Skip to main content
Log in

Hollow-core graded index optical fiber refractive index sensor based on surface plasmon resonance

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a novel topology for refractive index optical fiber sensors based on surface plasmon resonance (SPR) phenomenon is presented. The fiber core has a graded refractive index and there is a hole at the center of the core which is coated by silver. The analyte is injected into the hole. In our structure, there is no need for removing the cladding of the fiber. Two types of graded refractive index profiles are investigated in this paper. The proposed sensor is simulated using finite difference time domain method. The results show that the presented SPR sensor has a good spectral response and suitable sensory specifications. The sensitivity of the proposed sensor is about 4350 nm/RIU. The figure of merit of this sensor is 149 RIU−1. The proposed sensor can be used for measuring refractive indices between 1.38 and 1.49. As a result, it can be used for bio-sensing applications. One of the advantages of the proposed sensor is that it is label-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abedini, M., et al.: Efficient geometry of surface plasmon resonance based fiber optic sensor. In: 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). IEEE (2018).‏ https://doi.org/10.1109/ELNANO.2018.8477444

  • Ahmet, Y., Ademgil, H.: Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors. Opt. Eng. 57(3), 030801 (2018). https://doi.org/10.1117/1.OE.57.3.030801

    Article  Google Scholar 

  • Arasu, P.T., et al.: Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer. Opt. Commun. 380, 260–266 (2016). https://doi.org/10.1016/j.optcom.2016.05.081

    Article  ADS  Google Scholar 

  • Arcas, A., et al.: Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors. Sensors 18(2), 648 (2018)

    Google Scholar 

  • Asgari, S., Granpayeh, N.: Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layers. IEEE Sens. J. (2019). https://doi.org/10.1109/JSEN.2019.2906759

    Article  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    ADS  Google Scholar 

  • Bhardwaj, V., Kishor, K., Singh, V.K.: Experimental and theoretical analysis of connector offset optical fiber refractive index sensor. Plasmonics 12(6), 1999–2004 (2017). https://doi.org/10.1007/s11468-016-0473-1

    Article  Google Scholar 

  • Bhatia, P., Gupta, B.D.: Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sens. Actuators, B 161, 434–438 (2012)

    Google Scholar 

  • Canning, J., et al.: White light sources based on multiple precision selective micro-filling of structured optical waveguides. Opt. Express 16(20), 15700–15708 (2008)

    ADS  Google Scholar 

  • Chao, Z., et al.: U-bent fiber optic SPR sensor based on graphene/AgNPs. Sens. Actuators B Chem. 251, 127–133 (2017a). https://doi.org/10.1016/j.snb.2017.05.045

    Article  Google Scholar 

  • Chao, L., et al.: Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 25(13), 14227–14237 (2017b). https://doi.org/10.1364/OE.25.014227

    Article  ADS  Google Scholar 

  • Chen, Y., Lin, Z., Bélanger-de Villers, S., Rusch, L.A., Shi, W.: WDM-compatible polarization-diverse OAM generator and multiplexer in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 26(2), 1–7 (2019a). https://doi.org/10.1109/JSTQE.2019.2941488

    Article  Google Scholar 

  • Chen, X., et al.: In-situ detection of small biomolecule interactions using a plasmonic tilted fiber grating sensor. J. Lightwave Technol. 37(11), 2792–2799 (2019b)

    ADS  Google Scholar 

  • Choi, W., et al.: Tomographic phase microscopy. Nat. Methods 4(9), 717–719 (2007)

    Google Scholar 

  • Cordeiro, C.M.B., et al.: Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 14(26), 13056–13066 (2006)

    ADS  Google Scholar 

  • Danaee, E., Geravand, A., Danaie, M.: Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon. Opt. Commun. 431, 216–228 (2019). https://doi.org/10.1016/j.optcom.2018.09.032

    Article  ADS  Google Scholar 

  • Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped si resonator. Plasmonics (2019). https://doi.org/10.1007/s11468-019-00926-9

    Article  Google Scholar 

  • Danaie, M., Nasirifar, R., Dideban, A.: Design of adjustable T-shaped and Y-shaped photonic crystal power splitters for TM and TE polarizations. Turk. J. Electr. Eng. Comput. Sci. 25(5), 4398–4408 (2017). https://doi.org/10.3906/elk-1702-334

    Article  Google Scholar 

  • Danaie, M., Nasiri Far, R., Dideban, A.: Design of a high-bandwidth Y-shaped photonic crystal power splitter for TE modes. Int. J. Opt. Photonics 12(1), 33–42 (2018). https://doi.org/10.29252/ijop.12.1.33

    Article  Google Scholar 

  • Dhar, G., Roli, V., Kumar, S.S.: Fiber Optic Sensors Based on Plasmonics. World Scientific, London (2015)

    Google Scholar 

  • Dhara, P., et al.: Optical fiber-based heavy metal detection using the Localized Surface Plasmon Resonance technique. IEEE Sens. J. 19(19), 8720–8726 (2019)

    ADS  Google Scholar 

  • Ding, Z., et al.: Surface plasmon resonance refractive index sensor based on tapered coreless optical fiber structure. J. Lightwave Technol. 35(21), 4734–4739 (2017). https://doi.org/10.1109/JLT.2017.2755668

    Article  ADS  Google Scholar 

  • Dolatabady, A., Asgari, S., Granpayeh, N.: Tunable mid-infrared nanoscale graphene-based refractive index sensor. IEEE Sens. J. 18(2), 569–574 (2017). https://doi.org/10.1109/JSEN.2017.2778003

    Article  ADS  Google Scholar 

  • Esmaili, M., Bahrami, A.: Photonic crystal back reflector for efficiency enhancement of Si-based thin film solar cells. Electron. Eng. Lett. 3(1), 13–18 (2018). https://doi.org/10.1557/PROC-1153-A03-05

    Article  Google Scholar 

  • Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2), 401–407 (2019). https://doi.org/10.1364/JOSAB.36.000401

    Article  ADS  Google Scholar 

  • Farmani, A., Mir, A.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. (2019). https://doi.org/10.1109/LPT.2019.2904618

    Article  Google Scholar 

  • Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys. E 116, 113730 (2020)

    Google Scholar 

  • Fussgaen, K., Martiens, W., Bilz, H.: Uv absorption of Ag+ doped alkali halide crystals. Phys. Status Solidi 12(1), 383–397 (1965)

    Google Scholar 

  • Gangwar, R.K., Amorim, V.A., Marques, P.V.S.: High performance titanium oxide coated D-shaped optical fiber plasmonic sensor. IEEE Sens. J. 19(20), 9244–9248 (2019)

    ADS  Google Scholar 

  • Geravand, A., Danaie, M., Mohammadi, S.: All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Opt. Commun. 430, 323–335 (2019). https://doi.org/10.1016/j.optcom.2018.08.052

    Article  ADS  Google Scholar 

  • Ghatak, A.K., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • González, V., Salvador, J., et al.: Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sens. Actuators B Chem. 242, 912–920 (2017)

    Google Scholar 

  • Haseda, K., et al.: Significant correlation between refractive index and activity of mitochondria: single mitochondrion study. Biomed. Opt. Express 6(3), 859–869 (2015)

    Google Scholar 

  • Huang, Y., Yong, X., Yariv, A.: Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85(22), 5182–5184 (2004)

    ADS  Google Scholar 

  • Iadicicco, A., et al.: Thinned fiber Bragg gratings as refractive index sensors. IEEE Sens. J. 5(6), 1288–1295 (2005a)

    ADS  Google Scholar 

  • Iadicicco, A., et al.: Refractive index sensor based on microstructured fiber Bragg grating. IEEE Photonics Technol. Lett. 17(6), 1250–1252 (2005b)

    ADS  Google Scholar 

  • Islam, MdS, et al.: A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7, 79085–79094 (2019)

    Google Scholar 

  • Janfaza, M., Mansouri-Birjandi, M.A., Tavousi, A.: Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on Bragg gratings. Opt. Commun. 440, 75–82 (2019). https://doi.org/10.1016/j.optcom.2019.01.062

    Article  ADS  Google Scholar 

  • Janipour, M., et al.: A novel adjustable plasmonic filter realization by split mode ring resonators. J. Electromagn. Anal. Appl. 5(12), 405–414 (2013)

    ADS  Google Scholar 

  • Jean, P., Gervais, A., LaRochelle, S., Shi, W.: Slow light in subwavelength grating waveguides. IEEE J. Sel. Top. Quantum Electron. 26(2), 1–8 (2019). https://doi.org/10.1109/jstqe.2019.2933788

    Article  Google Scholar 

  • Jing, N., et al.: Refractive index sensing based on a side-polished macrobend plastic optical fiber combining surface plasmon resonance and macrobending loss. IEEE Sens. J. 19(14), 5665–5669 (2019).

    ADS  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14(1), 53–62 (2019a). https://doi.org/10.1007/s11468-018-0777-4

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth. Analog Integr. Circ. Sig. Process 98(2), 367–376 (2019b). https://doi.org/10.1007/s10470-018-1254-x

    Article  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron. (2019c). https://doi.org/10.1049/iet-opt.2018.5098

    Article  Google Scholar 

  • Kuhlmey, B.T., Eggleton, B.J., Wu, D.K.C.: Fluid-filled solid-core photonic bandgap fibers. J. Lightwave Technol. 27(11), 1617–1630 (2019)

    ADS  Google Scholar 

  • Li, K., Zhou, W., Zeng, S.: Optical micro/nanofiber-based localized surface plasmon resonance biosensors: fiber diameter dependence. Sensors 18(10), 3292 (2018)

    Google Scholar 

  • Li, Z., et al.: Graphene enhanced leaky mode resonance in tilted fiber Bragg grating: a new opportunity for highly sensitive fiber optic sensor. IEEE Access 7, 26641–26651 (2019)

    Google Scholar 

  • Liehr, A.D., Ballhausen, C.J.: Intensities in inorganic complexes. Phys. Rev. 106(6), 1161–1163 (1957)

    ADS  Google Scholar 

  • Lin, H.-Y., et al.: Tapered optical fiber sensor based on localized surface plasmon resonance. Opt. Express 20(19), 21693–21701 (2012)

    ADS  Google Scholar 

  • Luo, D., et al.: Etched FBG coated with polyimide for simultaneous detection the salinity and temperature. Opt. Commun. 392, 218–222 (2017)

    ADS  Google Scholar 

  • Marcinkevičius, A., et al.: Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26(5), 277–279 (2001)

    ADS  Google Scholar 

  • Min, L., et al.: High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance. Appl. Opt. 57(8), 1883–1886 (2018). https://doi.org/10.1364/AO.57.001883

    Article  ADS  Google Scholar 

  • Moayyed, H., et al.: Theoretical study of phase-interrogated surface plasmon resonance based on optical fiber sensors with metallic and oxide layers. Plasmonics 10(4), 979–987 (2015)

    Google Scholar 

  • Moradi, P., Bahrami, A.: Design of an optomechanical filter based on solid/solid phoxonic crystals. J. Appl. Phys. 123(11), 115113 (2018). https://doi.org/10.1063/1.5018840

    Article  ADS  Google Scholar 

  • Nasirifar, R., Danaie, M., Dideban, A.: Dual channel optical fiber refractive index sensor based on surface plasmon resonance. Optik 186, 194–204 (2019). https://doi.org/10.1016/j.ijleo.2019.04.104

    Article  ADS  Google Scholar 

  • Nejad, H.E., Mir, A., Farmani, A.: Supersensitive and tunable nano-biosensor for cancer detection. IEEE Sens. J. (2019). https://doi.org/10.1109/JSEN.2019.2899886

    Article  Google Scholar 

  • Nielsen, K., et al.: Selective filling of photonic crystal fibres. J. Opt. A: Pure Appl. Opt. 7(8), L13 (2005)

    Google Scholar 

  • Qian, W., et al.: Partially liquid-filled hollow-core photonic crystal fiber polarizer. Opt. Lett. 36(16), 3296–3298 (2011)

    ADS  Google Scholar 

  • Raether, H.: Surface Plasmons on Smooth Surfaces. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, pp. 4–39. Springer, Berlin (1988)

    Google Scholar 

  • Raj, D.R., et al.: Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt. Commun. 340, 86–92 (2015)

    ADS  MathSciNet  Google Scholar 

  • Rakhshani, M.R., Ali Mansouri-Birjandi, M.A.: A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photonics Nanostruct. Fundam. Appl. 32, 28–34 (2018). https://doi.org/10.1016/j.photonics.2018.08.002

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Tavousi, A., Mansouri-Birjandi, M.A.: Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl. Opt. 57(27), 7798–7804 (2018). https://doi.org/10.1364/AO.57.007798

    Article  ADS  Google Scholar 

  • Rashed, A.R., et al.: Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits. Sci. Rep. 8(1), 11457 (2018). https://doi.org/10.1038/s41598-018-29623-z

    Article  ADS  Google Scholar 

  • Rifat, A.A., et al.: Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 43(4), 891–894 (2018). https://doi.org/10.1364/OL.43.000891

    Article  ADS  Google Scholar 

  • Rithesh, R.D., et al.: Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles. Sens. Actuators B Chem. 224, 600–606 (2016). https://doi.org/10.1016/j.snb.2015.10.106

    Article  Google Scholar 

  • Rozalina, Z., et al.: Fabrication and simulation studies on D-shaped optical fiber sensor via surface plasmon resonance. J. Mod. Opt. 64(14), 1443–1449 (2017). https://doi.org/10.1080/09500340.2017.1293858

    Article  Google Scholar 

  • Santos, D.F., et al.: Simultaneous plasmonic measurement of refractive index and temperature based on a D-type fiber sensor with gold wires. IEEE Sens. J. 17(8), 2439–2446 (2017). https://doi.org/10.1109/JSEN.2017.2674522

    Article  ADS  Google Scholar 

  • Sazio, P.J.A., et al.: Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767), 1583–1586 (2006)

    ADS  Google Scholar 

  • Shaverdi, A., Soroosh, M., Namjoo, E.: Quality factor enhancement of optical channel drop filters based on photonic crystal ring resonators. Int. J. Opt. Photonics 12(2), 129–136 (2018). https://doi.org/10.29252/ijop.12.2.129

    Article  Google Scholar 

  • Shouzhen, J., et al.: A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure. J. Phys. D Appl. Phys. 50(16), 165105 (2017). https://doi.org/10.1088/1361-6463/aa628c

    Article  ADS  Google Scholar 

  • Shrivastav, A.M., et al.: Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 79, 150–157 (2016). https://doi.org/10.1016/j.bios.2015.11.095

    Article  Google Scholar 

  • Shushama, K.N., et al.: Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt. Commun. 383, 186–190 (2017). https://doi.org/10.1016/j.optcom.2016.09.015

    Article  ADS  Google Scholar 

  • Srivastava, S.K., et al.: Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose. Plasmonics 7(2), 261–268 (2012)

    Google Scholar 

  • Su, Y., et al.: Surface-plasmon-resonance-based optical fiber curvature sensor with temperature compensation by means of dual modulation method. Sensors 18(8), 2608 (2018)

    Google Scholar 

  • Sujan, C., et al.: Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens. Bio Sens. Res. 18, 7–12 (2018). https://doi.org/10.1016/j.sbsr.2018.02.003

    Article  Google Scholar 

  • Tabassum, R., Gupta, B.D.: Simultaneous estimation of vitamin K1 and heparin with low limit of detection using cascaded channels fiber optic surface plasmon resonance. Biosens. Bioelectron. 86, 48–55 (2016)

    Google Scholar 

  • Tabassum, R., Gupta, B.D.: Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers. IEEE J. Sel. Top. Quantum Electron. 32(2), 81–88 (2017). https://doi.org/10.1109/JSTQE.2016.2553442

    Article  ADS  Google Scholar 

  • Tavousi, A., Mansouri-Birjandi, M.A., Janfaza, M.: Graphene nanoribbon assisted refractometer based biosensor for mid-infrared label-free analysis. Plasmonics (2019). https://doi.org/10.1007/s11468-019-00909-w

    Article  Google Scholar 

  • Tuan, G.: Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing. J. Lightwave Technol. 35(16), 3323–3333 (2017). https://doi.org/10.1109/JLT.2016.2590879

    Article  Google Scholar 

  • Viña, L., Logothetidis, S., Cardona, M.: Temperature-dependence of the dielectric function of germanium. Phys. Rev. B 30(4), 1979–1991 (1984)

    ADS  Google Scholar 

  • Wei, W., et al.: Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing. Sensors 17(1), 2 (2017)

    Google Scholar 

  • Weng, S., et al.: High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res. 5(2), 103–107 (2017)

    MathSciNet  Google Scholar 

  • Wieduwilt, T., et al.: Gold-reinforced silver nanoprisms on optical fiber tapers—a new base for high precision sensing. APL Photonics 1(6), 066102 (2016). https://doi.org/10.1063/1.4953671

    Article  ADS  Google Scholar 

  • Wilson, J.D., Cottrell, W.J., Foster, T.H.: Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes. J. Biomed. Opt. 12(1), 014010 (2007)

    ADS  Google Scholar 

  • Wu, D.K.C., Kuhlmey, B.T., Eggleton, B.J.: Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34(3), 322–324 (2009)

    ADS  Google Scholar 

  • Xiao, L., et al.: Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Opt. Express 13(22), 9014–9022 (2005)

    ADS  Google Scholar 

  • Yariv, A., Yeh, P.: Optical Waves in Crystals, vol. 5. Wiley, New York (1984)

    Google Scholar 

  • Ying, Y., et al.: Recent research progress of optical fiber sensors based on D-shaped structure. Opt. Laser Technol. 90, 149–157 (2017). https://doi.org/10.1016/j.optlastec.2016.11.021

    Article  ADS  Google Scholar 

  • Zhang, X., et al.: Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 15(24), 16270–16278 (2007)

    ADS  Google Scholar 

  • Zhao, J., et al.: Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens. Actuators B Chem. 230, 206–211 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Danaie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasirifar, R., Danaie, M. & Dideban, A. Hollow-core graded index optical fiber refractive index sensor based on surface plasmon resonance. Opt Quant Electron 52, 341 (2020). https://doi.org/10.1007/s11082-020-02461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02461-y

Keywords

Navigation