Skip to main content
Log in

Tomato responses to Funneliformis mosseae during the early stages of arbuscular mycorrhizal symbiosis

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The concept of symbiosis can be described as a continuum of interactions between organisms ranging from mutualism to parasitism that can also change over time. Arbuscular mycorrhizal fungi (AMF) are among the most important obligate plant symbionts. Once the symbiosis is well established, mycorrhizal plants are more tolerant to biotic or abiotic stresses, so the AMF relationship with the host plant is generally described as mutualistic. However, little is known about AMF effects on the plant during the early stages of root colonization. The aim of this work was to assess the type of interaction (mutualistic or parasitic) between the arbuscular mycorrhizal (AM) fungus Funelliformis mosseae and Solanum lycopersicum cv. Rio Grande plants, at 7, 14, 21, and 28 days after inoculation (DAI), considering that in the adopted experimental design (one plant per pot), the seedling was the only carbon source for fungus development in the absence of common mycorrhizal networks with other plants. At each harvest, mycorrhizal colonization, shoot and root weights, morphometric parameters, and photosynthetic efficiency were evaluated. The presence of the AM fungus in the tomato root system was observed starting from the 14th DAI, and its level increased over time. Few effects of the fungus presence on the considered parameters were observed, and no stress symptoms ever appeared; so, we can state that the fungus behaved as a mutualistic symbiont during the early stages of plant growth. Moreover, a trend towards a positive effect on plant growth was observed at 28 DAI in mycorrhizal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aroca R, Ruiz-Lozano JM, Zamarrenõ AM, Paz JA, García-Mina JM, Pozo MJ, López-Ráeza JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    PubMed  CAS  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    PubMed  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13(1):123–141

    Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215

    Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker J, Munro M, Atkinson D, Giovannetti M, Marini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera L. Tree Physiol 15:281–293

    PubMed  CAS  Google Scholar 

  • Berta G, Fusconi A, Hooker J (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser Verlag, Basel, pp 71–86

    Google Scholar 

  • Berta G, Sampò S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with combined modes of action. Eur J Plant Pathol 111:279–288

    Google Scholar 

  • Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Copetta A, D’Agostino G, Massa N, Avidano L, Gamalero E, Berta G (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181–193

    PubMed  CAS  Google Scholar 

  • Bona E, Scarafoni A, Marsano F, Boatti L, Copetta A, Massa N, Gamalero E, D’Agostino G, Cesaro P, Cavaletto M, Berta G (2016) Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study. Sci Rep 6:26439

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bona E, Todeschini V, Cantamessa S, Cesaro P, Copetta A, Lingua G, Gamalero E, Berta G, Massa N (2018) Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Sci Hortic 234:160–165

    CAS  Google Scholar 

  • Cicatelli A, Torrigiani P, Todeschini V, Biondi S, Castiglione S, Lingua G (2014) Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects. iForest 7:333–341

    Google Scholar 

  • Citernesi AS, Vitagliano C, Giovannetti M (1998) Plant growth and root system morphology of Olea europaea L. rooted cutting as influenced by arbuscular mycorrhiza. J Hortic Sci Biotechnol 75:647–654

    Google Scholar 

  • Del-Saz NF, Romero-Munar A, Alonso D, Aroca R, Baraza E, Flexas J, Ribas-Carbo M (2017) Respiratory ATP cost and benefit of arbuscular mycorrhizal symbiosis with Nicotiana tabacum at different growth stages and under salinity. J Plant Physiol 218:243–248

    PubMed  CAS  Google Scholar 

  • Dermatsev V, Weingarten-baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-gati E, Zilberstein A, Koltai H, Kapulnik Y (2010) Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Mol Plant Pathol 11(1):121–135. https://doi.org/10.1111/J.1364-3703.2009.00581.X

    Article  PubMed  CAS  Google Scholar 

  • Dreyer B, Honrubia M, Morte A (2014) How root structure defines the arbuscular mycorrhizal symbiosis and what we can learn from it? In: Morte A, Varma A (eds) Root engineering. Soil Biology. Springer, Berlin, pp 145–169

    Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    PubMed  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    CAS  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202

    PubMed  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756

    Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    CAS  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    CAS  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    PubMed  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109

    Google Scholar 

  • Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux P, Klingl V, von Ropenack-Lahaye E, Wang TL, Eisenreich W, Dormann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. eLIFE 6:e29107

    PubMed  PubMed Central  Google Scholar 

  • Konvalinková T, Jansa J (2016) Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci 7:782

    PubMed  PubMed Central  Google Scholar 

  • Lanfranco L, Fiorilli V, Gutjahr C (2018a) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220:1031–1046

    PubMed  Google Scholar 

  • Lanfranco L, Fiorilli V, Venice F, Bonfante P (2018b) Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot 69:2175–2188

    PubMed  CAS  Google Scholar 

  • Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Google Scholar 

  • Latef AAHA, Hashem A, Rasool S, Allah EFA, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA, Ahmad P (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol 59:407–426

    Google Scholar 

  • Leung TLF, Poulin R (2008) Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie et Milieu – Life Environ 58:107–115

    Google Scholar 

  • Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43(3):379–393

    CAS  Google Scholar 

  • Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    PubMed  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147

    PubMed  CAS  Google Scholar 

  • Lu X, Koide RT (1994) The effects of mycorrhizal infection on components of plant growth and reproduction. New Phytol 128:211–218

    CAS  Google Scholar 

  • Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390

    PubMed  CAS  Google Scholar 

  • Olah B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    PubMed  CAS  Google Scholar 

  • Ouzounidou G (1996) The use of photoacustic spectroscopy in assessing leaf photosynthesis under copper stress: correlation of energy storage to photosystem II fluorescence parameters and redox change of P700. Plant Sci 113:229–237

    CAS  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73(1–3):149–156

    PubMed  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna https://www.R-project.org/

    Google Scholar 

  • Ronsheim ML (2012) The effect of mycorrhizae on plant growth and reproduction varies with soil phosphorus and developmental stage. Am Midl Nat 167:28–39

    Google Scholar 

  • Ruscitti M, Arango M, Ronco M, Beltrano J (2011) Inoculation with mycorrhizal fungi modifies proline metabolism and increases chromium tolerance in pepper plants (Capsicum annuum L.). Braz J Plant Physiol 23(1):15–25

    CAS  Google Scholar 

  • Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol V. Kluwer Academic Publishers, Dordrecht, pp 4253–4258

    Google Scholar 

  • Sgardelis S, Cook CM, Pantis JD, Lanaras T (1994) Comparison of chlorophyll fluorescence and some heavy metal concentrations in Sonchus spp. and Taraxacum spp. along an urban pollution gradient. Sci Total Environ 158:157–164

    CAS  Google Scholar 

  • Sharma MP, Adholeya A (2000) Enhanced growth and productivity following inoculation with indigenous AM fungi in four varieties of onion (Allium cepa L.) in an Alfisol. Biol Agric Hortic 18:1–14

    Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    PubMed  CAS  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnel K, Roberson RW, Taylor TN, Uehling J, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • Varga S (2015) Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment. Am J Bot 102(3):358–366

    PubMed  Google Scholar 

  • Varga S, Kytöviita MM (2016) Faster acquisition of symbiotic partner by common mycorrhizal networks in early plant stage. Ecosphere 7(1):e01222

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Donata Vigani for technical support.

Funding

This research is original and had financial support from the Università del Piemonte Orientale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Massa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesaro, P., Massa, N., Cantamessa, S. et al. Tomato responses to Funneliformis mosseae during the early stages of arbuscular mycorrhizal symbiosis. Mycorrhiza 30, 601–610 (2020). https://doi.org/10.1007/s00572-020-00973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-00973-9

Keywords

Navigation