Skip to main content
Log in

Design and Simulation of a DNA Origami Nanopore for Large Cargoes

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Since less than a decade ago, the DNA origami technique has become an important tool in nanopore fabrication. DNA origami nanopores are highly efficient because of their compatibility with biomolecules and the possibility to precisely engineer their dimensions and designs. However, accurate comprehension of their molecular behavior under various conditions is still unsatisfactory. In this study, a thin plate DNA origami nanopore is designed and investigated using molecular dynamics simulation. The thin plate is designed using caDNAno software along with the square lattice method and the molecular dynamics simulation is performed using GROMACS software. The model is simulated in a wide temperature range and its stability is investigated. The shape and dimensions of the nanopore are also compared at these temperatures. The results indicate that the designed nanopore exhibits decent stability at these temperatures and no breakdown was observed despite some distortions in the structure at high temperatures. In addition, the effect of the number of staple strands on the structure, stability, and deformation of the DNA origami plate is investigated and it is found that addition of staple strands have a significant positive effect on the stability of nanopore’s shape. By the results of analyzing the shape of the nanopore, it suggests that the proposed nanopore can be used to pass a wide range of molecules, macromolecules, and drug cargoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Seeman, N. C. (1982). Nucleic acid junctions and lattices. Journal of Theoretical Biology,99, 237–247.

    Article  CAS  Google Scholar 

  2. Watson, J. D., & Crick, F. H. C. (1953). The structure of DNA. Cold Spring Harbor Laboratory Press,18, 123–131.

    Article  CAS  Google Scholar 

  3. Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature,440, 297–302.

    Article  CAS  Google Scholar 

  4. Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature,459, 414–418.

    Article  CAS  Google Scholar 

  5. Dietz, H., Douglas, S. M., & Shih, W. M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science,325, 725–730.

    Article  CAS  Google Scholar 

  6. Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., & Yan, H. (2011). DNA origami with complex curvatures in three-dimensional space. Science,332, 342–346.

    Article  CAS  Google Scholar 

  7. Pinheiro, A. V., Han, D., Shih, W. M., & Yan, H. (2011). Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology,6, 763–772.

    Article  CAS  Google Scholar 

  8. Tørring, T., Voigt, N. V., Nangreave, J., Yan, H., & Gothelf, K. V. (2011). DNA origami: A quantum leap for self-assembly of complex structures. Chemical Society Reviews,40, 5636–5646.

    Article  Google Scholar 

  9. Castro, C. E., Kilchherr, F., Kim, D.-N., Shiao, E. L., Wauer, T., Wortmann, P., et al. (2011). A primer to scaffolded DNA origami. Nature Methods,8, 221–229.

    Article  CAS  Google Scholar 

  10. Kuzuya, A., & Komiyama, M. (2010). DNA origami: Fold, stick, and beyond. Nanoscale,2, 310–322.

    Article  CAS  Google Scholar 

  11. Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of United States of America,93, 13770–13773.

    Article  CAS  Google Scholar 

  12. Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., et al. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology,26, 1146–1153.

    Article  CAS  Google Scholar 

  13. Pennisi, E. (2012). Search for pore-fection. Science,336, 536–537.

    Article  Google Scholar 

  14. Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National academy of Sciences of the United States of America,93, 13770–13773.

    Article  CAS  Google Scholar 

  15. Bayley, H., & Martin, C. (2000). Resistive-pulse sensing-from microbes to molecules. Chemical Reviews,100, 2575–2594.

    Article  CAS  Google Scholar 

  16. Deamer, D. W., & Branton, D. (2002). Characterization of nucleic acids by nanopore analysis. Accounts of Chemical Research,35, 817–825.

    Article  CAS  Google Scholar 

  17. Song, L., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H., & Gouaux, J. E. (1996). Structure of staphylococcal a-hemolysin, a heptameric transmembrane pore. Science,274, 1859–1866.

    Article  CAS  Google Scholar 

  18. Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., & Golovchenko, J. A. (2010). Graphene as a subnanometre trans-electrode membrane. Nature,467, 190–193.

    Article  CAS  Google Scholar 

  19. Wei, R., Martin, T. G., Rant, U., & Dietz, H. (2012). DNA origami gatekeepers for solid-state nanopores. Angewandte Chemie International Edition,51, 4864–4867.

    Article  CAS  Google Scholar 

  20. Bell, N. A. W., Engst, C. R., Ablay, M., Divitini, G., Ducati, C., Liedl, T., et al. (2012). DNA origami nanopores. Nano Letters,12, 512–517.

    Article  CAS  Google Scholar 

  21. Krishnan, S., Ziegler, D., Arnaut, V., Martin, T. G., Kapsner, K., Henneberg, K., et al. (2016). Molecular transport through large-diameter DNA nanopores. Nature Communications.,7, 12787.

    Article  CAS  Google Scholar 

  22. Plesa, C., Ananth, A. N., Linko, V., et al. (2014). Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. American Chemical Society,8, 35–43.

    CAS  Google Scholar 

  23. Kim, D. N., Kilchherr, F., Dietz, H., & Bathe, M. (2012). Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Research,40, 2862–2868.

    Article  CAS  Google Scholar 

  24. Ouldridge, T. E., Louis, A. A., & Doye, J. P. K. (2010). DNA nanotweezers studied with a coarse-grained model of DNA. Physical Review Letters,104, 178101.

    Article  Google Scholar 

  25. Ouldridge, T. E., Louis, A. A., & Doye, J. P. K. (2011). Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. The Journal of Chemical Physics,134, 085101.

    Article  Google Scholar 

  26. Snodin, B. E. K., Randisi, F., Mosayebi, M., Sulc, P., Schreck, J. S., Romano, F., et al. (2015). Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. The Journal of Chemical Physics,142, 234901.

    Article  Google Scholar 

  27. Yoo, J., & Aksimentiev, A. (2013). In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America,110, 20099–20104.

    Article  CAS  Google Scholar 

  28. Maffeo, C., Yoo, J., & Aksimentiev, A. (2016). De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation. Nucleic Acids Research,44(7), 3013–3019.

    Article  CAS  Google Scholar 

  29. Li, C. Y., Hemmig, E. A., Kong, J., Yoo, J., Hernandez-Ainsa, S., Keyser, U. F., et al. (2015). Ionic conductivity, structural deformation, and programmable anisotropy of dna origami in electric field. ACS Nano,9(2), 1420–1433.

    Article  CAS  Google Scholar 

  30. Yoo, J., & Aksimentiev, A. (2015). Molecular dynamics of membrane-spanning DNA channels: Conductance mechanism, electro-osmotic transport, and mechanical gating. Journal of Physical Chemistry Letters,6, 4680–4687.

    Article  CAS  Google Scholar 

  31. Göpfrich, K., Li, C. Y., Mames, I., Bhamidimarri, S. P., Ricci, M., Yoo, J., et al. (2016). Ion channels made from a single membrane-spanning DNA duplex. Nano Letters,16, 4665–4669.

    Article  Google Scholar 

  32. Göpfrich, K., Li, C. Y., Ricci, M., Bhamidimarri, S. P., Yoo, J., Gyenes, B., et al. (2016). Large-conductance transmembrane porin made from DNA origami. ACS Nano,10, 8207.

    Article  Google Scholar 

  33. Ohmann, A., Li, C. Y., Maffeo, C., Al Nahas, K., Baumann, K. N., Göpfrich, K., et al. (2018). A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes. Nature Communication,9, 2426.

    Article  Google Scholar 

  34. Belkin, M., & Aksimentiev, A. (2016). Molecular dynamics simulation of DNA capture and transport in heated nanopores. ACS Applied Materials,8, 12599–12608.

    Article  CAS  Google Scholar 

  35. Douglas, S. M., Marblestonen, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., & Shih, W. M. (2009). Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research,37(15), 5001–5006.

    Article  CAS  Google Scholar 

  36. Ramakrishnan, S., Ijäs, H., Linko, V., & Keller, A. (2018). Structural stability of DNA origami nanostructures under application specific conditions. Computational and Structural Biotechnological Journal,16, 342–349.

    Article  CAS  Google Scholar 

  37. Pillers, M. A., & Lieberman, M. (2014). Thermal stability of DNA origami on mica. Journal of Vacuum Science and Technology,32, 040602.

    Article  Google Scholar 

  38. Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., & Sugiyama, H. (2011). Photo-cross linking assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. Journal of the American Chemical Society,133(37), 14488–14491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Hasanzadeh Ghasemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, R., Ghasemi, R.H. & Soheilifard, R. Design and Simulation of a DNA Origami Nanopore for Large Cargoes. Mol Biotechnol 62, 423–432 (2020). https://doi.org/10.1007/s12033-020-00261-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00261-z

Keywords

Navigation