Skip to main content
Log in

Preparation of Diamond Reinforced NiCoCrTi0.5Nb0.5 High-Entropy Alloy Coating by Laser Cladding: Microstructure and Wear Behavior

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The diamond enhanced (NiCoCrTi0.5Nb0.5)Cx (x = 3, 6, 12 wt.%) high-entropy alloy coatings were well-prepared by laser cladding, which are denoted as C3, C6 and C12, respectively. The macroscopic morphology, phase, microstructure, hardness and wear resistance were investigated. The coatings without pores and cracks, are well-metallurgically bonded with the substrate. The width, melting depth and dilution rate of (NiCoCrTi0.5Nb0.5)Cx coating decrease with the increase of diamond content. The coatings are mainly composed of BCC solid solution, (Ti,Nb)C and Cr3C2. The increase of diamond content results in the precipitation of (Ti,Nb)C and Cr3C2, and the coating with x = 12 wt.% retains more diamonds. The hardness of coatings is much higher than that of the substrate. As the diamond content increases, the average hardness of (NiCoCrTi0.5Nb0.5)Cx coating increases first and then decreases. The abrasive wear occurs in each coating. The wear depth, roughness and wear rate decrease first and then increase as the diamond content increases. The C6 coating with the better wear resistance produces a smooth worn surface, which indicates that C6 coating can be fully applied to various tools, molds and mechanical parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.K. Hou, C.T. Hu, and S. Lee, The Effect of Aluminium on the Magnetic Properties of Lamination Steels, IEEE Trans. Magn., 1991, 27(5), p 4305-4309

    Article  CAS  Google Scholar 

  2. R.F. Shyu and C.T. Ho, In Situ Reacted Titanium Carbide-Reinforced Aluminum Alloys Composite, J. Mater. Process. Technol., 2006, 171(3), p 411-416

    Article  CAS  Google Scholar 

  3. C.M. Sonsino and K. Dieterich, Fatigue Design with Cast Magnesium Alloys Under Constant and Variable Amplitude Loading, Int. J. Fatigue, 2006, 28(3), p 183-193

    Article  CAS  Google Scholar 

  4. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299-303

    Article  CAS  Google Scholar 

  5. L. Jiang, W. Wu, Z. Cao, D. Deng, and T. Li, Microstructure Evolution and Wear Behavior of the Laser Cladded CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb High-Entropy Alloy Coatings, J. Therm. Spray Technol., 2016, 25(4), p 806-814

    Article  CAS  Google Scholar 

  6. F.Y. Shu, L. Wu, H.Y. Zhao, S.H. Sui, L. Zhou, and J. Zhang, Microstructure and High-Temperature Wear Mechanism of Laser Cladded CoCrBFeNiSi High-Entropy Alloy Amorphous Coating, Mater. Lett., 2017, 211, p 235-238

    Article  Google Scholar 

  7. T.S. Reddy, I.S. Wani, T. Bhattacharjee, S.R. Reddy, R. Saha, and P.P. Bhattacharjee, Severe Plastic Deformation Driven Nanostructure and Phase Evolution in a Al0.5CoCrFeMnNi Dual Phase High Entropy Alloy, Intermetallics, 2017, 91, p 150-157

    Article  CAS  Google Scholar 

  8. W. Wu, L. Jiang, H. Jiang, X. Pan, and T. Li, Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding, J. Therm. Spray Technol., 2015, 24(7), p 1333-1340

    Article  CAS  Google Scholar 

  9. H. Zhang, Y. Pan, and Y. He, Effects of Annealing on the Microstructure and Properties of 6FeNiCoCrAlTiSi High-Entropy Alloy Coating Prepared by Laser Cladding, J. Therm. Spray Technol., 2011, 20(5), p 1049-1055

    Article  Google Scholar 

  10. S. Zhang, C.L. Wu, C.H. Zhang, M. Guan, and J.Z. Tan, Laser Surface Alloying of FeCoCrAlNi High-Entropy Alloy on 304 Stainless Steel to Enhance Corrosion and Cavitation Erosion Resistance, Opt. Laser Technol., 2016, 84, p 23-31

    Article  CAS  Google Scholar 

  11. R.F. Zhao, B. Ren, G.P. Zhang, Z.X. Liu, B. Cai, and J.J. Zhang, CoCrxCuFeMnNi High-Entropy Alloy Powders with Superior Soft Magnetic Properties, J. Magn. Magn. Mater., 2019, 491, p 165574

    Article  CAS  Google Scholar 

  12. H. Liang, H. Yao, D. Qiao, S. Nie, Y. Lu, D. Deng, Z.Q. Cao, and T. Wang, Microstructures and Wear Resistance of AlCrFeNi2W0.2Nbx High-Entropy Alloy Coatings Prepared by Laser Cladding, J. Therm. Spray Technol., 2019, 6(28), p 1318-1329

    Article  Google Scholar 

  13. D. Lin, N. Zhang, B. He, X. Gong, Y. Zhang, D. Li, and F.Y. Dong, Structural Evolution and Performance Changes in FeCoCrNiAlNbx High-Entropy Alloy Coatings Cladded by Laser, J. Therm. Spray Technol., 2017, 26(8), p 2005-2012

    Article  CAS  Google Scholar 

  14. R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, and H.S. Grewal, Exceptionally High Cavitation Erosion and Corrosion Resistance of a High Entropy Alloy, Ultrason. Sonochem., 2017, S135-04177(17), p 30450

    Google Scholar 

  15. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Microstructure and Electrochemical Properties of High Entropy Alloys—A Comparison with type-304 Stainless Steel, Corros. Sci., 2005, 47(9), p 2257-2279

    Article  CAS  Google Scholar 

  16. T.K. Chen, T.T. Shun, J.W. Yeh, and M.S. Wong, Nanostructured Nitride Films of Multi-Element High-Entropy Alloys by Reactive DC Sputtering, Surf. Coat. Technol., 2004, 188-189, p 193-200

    Article  CAS  Google Scholar 

  17. X.W. Qiu, Y.P. Zhang, and C.G. Liu, Effect of Ti Content on Structure and Properties of Al2CrFeNiCoCuTix High-Entropy Alloy Coatings, J. Alloy. Compd., 2014, 585, p 282-286

    Article  CAS  Google Scholar 

  18. L.L. Hou, J.T. Hui, Y.H. Yao, J. Chen, and J.N. Liu, Effects of Boron Content on Microstructure and Mechanical Properties of AlFeCoNiBx High Entropy Alloy Prepared by Vacuum Arc Melting, Vacuum, 2019, 164, p 212-218

    Article  CAS  Google Scholar 

  19. N.N. Guo, L.S. Luo, Y.Q. Su, and J.J. Guo, Microstructure and Mechanical Properties of ZrNbMoHfV High Entropy Alloy, Mater. Res. Innov., 2014, 18(sup4), p 766-769

    Google Scholar 

  20. Q.F. Wu, Z.J. Wang, T. Zheng, D. Chen, Z.S. Yang, J.J. Li, J.J. Kai, and J.C. Wang, A Casting Eutectic High Entropy Alloy with Superior Strength-Ductility Combination, Mater. Lett., 2019, 253, p 268-271

    Article  CAS  Google Scholar 

  21. L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, and T.J. Li, Annealing Effects on the Microstructure and Properties of Bulk High-Entropy CoCrFeNiTi0.5 Alloy Casting Ingot, Intermetallics, 2014, 44, p 37-43

    Article  Google Scholar 

  22. P.K. Farayibi, T.E. Abioye, A. Kennedy, and A.T. Clare, Development of Metal Matrix Composites by Direct Energy Deposition of ‘Satellited’ Powders, J. Manuf. Process., 2019, 45, p 429-437

    Article  Google Scholar 

  23. H.F. El-Labban, E.R.I. Mahmoud, and A. Algahtani, Microstructure, Wear, and Corrosion Characteristics of TiC-Laser Surface Cladding on Low-Carbon Steel, Metall. Mater. Trans. B, 2016, 47(2), p 974-982

    Article  CAS  Google Scholar 

  24. A.T. Clare, O. Oyelola, T.E. Abioye, and P.K. Farayibi, Laser Cladding of Rail Steel with Co–Cr, Surf. Eng., 2013, 29(10), p 731-736

    Article  CAS  Google Scholar 

  25. O.S. Adesina, A.P.I. Popoola, S.L. Pityana, and D.T. Oloruntoba, Microstructural and Tribological Behavior of In Situ Synthesized Ti/Co Coatings on Ti-6Al-4 V Alloy Using Laser Surface Cladding Technique, Int. J. Adv. Manuf. Technol., 2018, 95, p 1265-1280

    Article  Google Scholar 

  26. T.F. Han, M. Xiao, Y. Zhang, and Y.F. Shen, Laser Cladding Composite Coatings by Ni–Cr–Ti–B4C with Different Process Parameters, Mater. Manuf. Process., 2019, 34(8), p 898-906

    Article  CAS  Google Scholar 

  27. D.M. Goodarzi, J. Pekkarinen, and A. Salminen, Analysis of Laser Cladding Process Parameter Influence on the Clad Bead Geometry, Weld World, 2017, 61(5), p 883-891

    Article  CAS  Google Scholar 

  28. M.Z. Ibrahim, A.A.D. Sarhan, T.Y. Kuo, F. Yusof, and M. Hamdi, Characterization and Hardness Enhancement Of Amorphous Fe-Based Metallic Glass Laser Cladded on Nickel-Free Stainless Steel for Biomedical Implant Application, Mater. Chem. Phys., 2019, 235, p 121745

    Article  CAS  Google Scholar 

  29. Y. Zhang, T.F. Han, M. Xiao, and Y.F. Shen, Effect of Nb Content on Microstructure and Properties of Laser Cladding FeNiCoCrTi0.5Nbx High-Entropy Alloy Coating, Optik, 2019, 198, p 163316

    Article  CAS  Google Scholar 

  30. M.M. Khruschov, Principles of Abrasive Wear, Wear, 1974, 28(1), p 69-88

    Article  Google Scholar 

Download references

Funding

This study was supported by the National key R&D program of China (2018YFB1105801), the National natural science foundation of China, youth fund project (51605473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Shen.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Han, T., Xiao, M. et al. Preparation of Diamond Reinforced NiCoCrTi0.5Nb0.5 High-Entropy Alloy Coating by Laser Cladding: Microstructure and Wear Behavior. J Therm Spray Tech 29, 1827–1837 (2020). https://doi.org/10.1007/s11666-020-01067-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01067-w

Keywords

Navigation