Skip to main content
Log in

Structural and Magnetic Studies of Annealed Iron Oxide Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The aim of this research work was to study the structural and magnetic properties of iron oxide nanoparticles. The as-prepared sample was synthesized by a co-precipitation route and annealed at different temperatures. The annealed samples were investigated using different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), and Mössbauer spectrometry (MS). The XRD results indicate the formation of three phases which have been identified as magnetite (Fe3O4), maghemite (γ-Fe2O3), and hematite (a-Fe2O3). The crystallite size was very similar for both magnetite and maghemite, and it was higher for hematite. The TEM observations showed that the particle shapes were affected by the annealing temperature (Tan). In addition, the SEM analysis revealed a wide distribution of the particle size. The magnetic measurements enabled the determination of a blocking temperature for both Fe3O4 and γ-Fe2O3 as 210 and 240 K, respectively. The Morin transition temperature was determined in the case of α-Fe2O3 from the magnetization and the MS measurements. The synthesized iron oxide nanoparticles can be good candidates for hyperthermia applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Can, M.M., Coskun, M., Fırat, T.: A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (a-Fe2O3) using ferromagnetic resonance. J. Alloys Compd. 542, 241–247 (2012)

    Article  Google Scholar 

  2. Sun, Y., Ma, M., Zhang, Y., Gu, N.: Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf. A Physicochem. Eng. Asp. 245, 15–19 (2004)

    Article  Google Scholar 

  3. Oh, J.K., Park, J.M.: Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog. Polym. Sci. 36, 168–189 (2011)

    Article  Google Scholar 

  4. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26, 3995–4021 (2005)

    Article  Google Scholar 

  5. Guo, S., Li, D., Zhang, L., Li, J., Wang, E.: Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials. 30, 1881–1889 (2009)

    Article  Google Scholar 

  6. Liu, X., Tao, Y., Mao, H., Kong, Y., Shen, J., Deng, L., Yang, L.: Construction of magnetic-targeted and NIR irradiation-controlled drug delivery platform with Fe3O4@au@SiO2 nanospheres. Ceram. Int. 43, 5061–5067 (2017)

    Article  Google Scholar 

  7. Haw, C.Y., Mohamed, F., Chia, C.H., Radiman, S., Zakaria, S., Huang, N.M., Lim, H.N.: Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram. Int. 36, 1417–1422 (2010)

    Article  Google Scholar 

  8. Zhang, L., Wu, H.B., Lou, X.W., Iron-oxide-based advanced anode materials for lithium-ion batteries, Adv. Energy Mater. 4 (2014) 1–11

  9. Wu, C., Yin, P., Zhu, X., Yang, C.O., Xie, Y.: Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B. 110, 17806–17812 (2006)

    Article  Google Scholar 

  10. Yanyan, X., Shuang, Y., Guoying, Z., Yaqiu, S., Dongzhao, G., Yuxiu, S.: Uniform hematite α-Fe2O3 nanoparticles: morphology, size-controlled hydrothermal synthesis and formation mechanism. Mater. Lett. 65, 1911–1914 (2011)

    Article  Google Scholar 

  11. Fleet, M.E.: The structure of magnetite: symmetry of cubic spinels. J. Solid State Chem. 62, 75–82 (1986)

    Article  ADS  Google Scholar 

  12. Shokrollahi, H.: A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 426, 74–81 (2017)

    Article  ADS  Google Scholar 

  13. Rollmann, G., Rohrbach, A., Entel, P., Hafner, J.: First-principles calculation of the structure and magnetic phases of hematite. Phys. Rev. B. 69, 1–12 (2004)

    Article  Google Scholar 

  14. Amin, N., Arajs, S.: Morin temperature of annealed submicronic α-Fe2O3 particles. Phys. Rev. B. 35, 4810–4811 (1987)

    Article  ADS  Google Scholar 

  15. Sato, J., Kobayashi, M., Kato, H., Miyazaki, T., Kakihana, M.: Hydrothermal synthesis of magnetite particles with uncommon crystal facets. J. Asian Ceram. Soc. 2, 258–262 (2014)

    Article  Google Scholar 

  16. Chen, Z., Du, Y., Li, Z., Yang, K., Lv, X.: Controllable synthesis of magnetic Fe3O4 particles with different morphology by one-step hydrothermal route. J. Magn. Magn. Mater. 426, 121–125 (2017)

    Article  ADS  Google Scholar 

  17. Zhu, L.P., Xiao, H.M., Zhang, W.D., Yang, G., Fu, S.Y.: One-pot template-free synthesis of monodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route. Cryst. Growth Des. 8, 957–963 (2008)

    Article  Google Scholar 

  18. Wang, W.W., Zhu, Y.J., Ruan, M.L.: Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J. Nanopart. Res. 9(2007), 419–426

  19. Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., Zeng, Y., Li, M., Zou, G.: Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater. 309, 307–311 (2007)

    Article  ADS  Google Scholar 

  20. Deshpande, K., Mukasyan, A., Varma, A.: Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem. Mater. 16, 4896–4904 (2004)

    Article  Google Scholar 

  21. de Carvalho, J.F., de Medeiros, S.N., Morales, M.A., Dantas, A.L., Carriço, A.S.: Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci. 275, 84–87 (2013)

    Article  ADS  Google Scholar 

  22. Yazdani, F., Seddigh, M.: Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater. Chem. Phys. 184, 318–323 (2016)

    Article  Google Scholar 

  23. Shen, L., Qiao, Y., Guon, Y., Meng, S., Yang, G., Wu, M., Zhao, J.: Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram. Int. 40, 1519–1524 (2014)

    Article  Google Scholar 

  24. Petcharoen, K., Sirivat, A.: Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B. 177, 421–427 (2012)

    Article  Google Scholar 

  25. Morato, A., Rives, V.: Comments on the application of the Scherrer equation in “Copper aluminum mixed oxide (CuAlMO) catalyst: a green approach for the one-pot synthesis of imines under solvent-free conditions”. Appl. Catal. B. 202, 418–419 (2017)

    Article  Google Scholar 

  26. Hankare, P.P., Vader, V.T., Patil, N.M., Jadhav, S.D., Sankpal, U.B., Kadam, M.R., Chouguleb, B.K., Gajbhiye, N.S.: Synthesis, characterization and studies on magnetic and electrical properties of Mg ferrite with Cr substitution. Mater. Chem. Phys. 113, 233–238 (2009)

    Article  Google Scholar 

  27. Uvarov, V., Popov, I.: Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013)

    Article  Google Scholar 

  28. McCusker, L.B., VonDreele, R.B., Cox, D.E., Louër, D., Scardi, P.: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999)

    Article  Google Scholar 

  29. Jafaria, A., Shayesteha, S.F., Saloutib, M., Boustani, K.: Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles. J. Magn. Magn. Mater. 379, 305–312 (2015)

    Article  ADS  Google Scholar 

  30. Alves, A.F., Mendo, S.G., Ferreira, L.P., Mendonça, M.H., Ferreira, P., Godinho, M., Cruz, M.M., Carvalho, M.D.: Gelatine-assisted synthesis of magnetite nanoparticles for magnetic hyperthermia. J. Nanopart. Res. 18–27 (2016)

  31. Legodi, M.A., de Waal, D.: The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigments. 74, 161–168 (2007)

    Article  Google Scholar 

  32. Upadhyay, S., Parekh, K., Pandey, B.: Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J. Alloys Compd. 678, 478–485 (2016)

    Article  Google Scholar 

  33. Tadic, M., Citakovic, N., Panjan, M., Stanojevic, B., Markovic, D., Jovanovic, D., Spasojevic, V.: Synthesis, morphology and microstructure of pomegranate-like hematite (a-Fe2O3) superstructure with high coercivity. J. Alloys Compd. 543, 118–124 (2012)

    Article  Google Scholar 

  34. Tadic, M., Trpkov, D., Kopanja, L., Vojnovic, S., Panjan, M.: Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. J. Alloys Compd. 792, 599–609 (2019)

    Article  Google Scholar 

  35. Tadic, M., Kopanja, L., Panjan, M., Nikodinovic-Runic, J.: Synthesis of core–shell hematite (α-Fe2O3) nanoplates: quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity. Appl. Surf. Sci. 403, 628–634 (2017)

    Article  ADS  Google Scholar 

  36. Jacob, J., AbdulKhadar, M.: VSM and Mössbauer study of nanostructured hematite. J. Magn. Magn. Mater. 322, 614–621 (2010)

    Article  ADS  Google Scholar 

  37. Aslibeiki, B., Ehsani, M.H., Nasirzadeh, F., Mohammadi, M.A.: The effect of interparticle interactions on spin glass and hyperthermia properties of Fe3O4 nanoparticles. Mater. Res. Express. 4, 075051 (2017)

    Article  ADS  Google Scholar 

  38. Ericsson, T., Krisnhamurthy, A., Srivastava, B.K.: Morin-transition in Ti-substituted hematite: a Mössbauer study. J. Phys. Scripta. 33, 88–90 (1986)

    Article  ADS  Google Scholar 

  39. Özdemir, Ö., Dunlop, D.J.: Morin transition in hematite: size dependence and thermal hysteresis. Geochem. Geophys. Geosyst. 9, 1–12 (2008)

    Article  Google Scholar 

  40. Yoshida, Y., Langouche, G.: Mössbauer spectroscopy, tutorial book, pp. 110–115. Springer, Fukuroi (2013)

    Book  Google Scholar 

Download references

Acknowledgments

This research work was supported by funds from FEDER (Programa Operacional Factores de Competitividade COMPETE) and from FCT-Fundação para a Ciência e a Tecnologia under Project No. UID/FIS/04564/2016. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sajieddine.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ounacer, M., Essoumhi, A., Sajieddine, M. et al. Structural and Magnetic Studies of Annealed Iron Oxide Nanoparticles. J Supercond Nov Magn 33, 3249–3261 (2020). https://doi.org/10.1007/s10948-020-05586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05586-z

Keywords

Navigation