Skip to main content
Log in

Differential double pulse voltammetry (DDPV) and additive differential pulse voltammetry (ADPV) applied to the study of the ACDT mechanism

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The value of double potential pulse differential techniques for electrochemical studies of dynamic chemical speciation is investigated within the context of liquid|liquid electrochemistry. Then, not only information about the speciation thermodynamics and kinetics is accessible, but also about the species lipophilicity. This provides a comprehensive view of their behaviour in natural and biological media. With the above aim, the current-potential response of the ACDT mechanism (aqueous complexation-dissociation coupled to transfer), where two chemically linked species can transfer between a hydrophilic and a lipophilic phase, is modelled in differential double pulse voltammetry (DDPV) and additive differential pulse voltammetry (ADPV). Explicit closed-form expressions are deduced for both techniques at liquid|liquid macrointerfaces, applicable to any charge number and lipophilicity of the species. The DDPV and ADPV signals are shown to be well sensitive to the features of the chemical reaction, as well as to the species charge and lipophilic character. Also, these techniques offer higher resolution and discrimination against superimposed signals than direct-current techniques, together with high sensitivity and minimization of capacitive effects and background currents, which are key advantages for accurate quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that the TOC scheme is a particular case of the ACDT mechanism.

References

  1. Zhao C-M, Campbell PGC, Wilkinson KJ (2016) When are metal complexes bioavailable? Environ Chem 13(3):425–433

    Article  CAS  Google Scholar 

  2. Kot A, Namiesńik J (2000) The role of speciation in analytical chemistry. TrAC Trends Anal Chem 19(2-3):69–79

    Article  CAS  Google Scholar 

  3. Kiss T, Enyedy ÉA, Jakusch T (2017) Development of the application of speciation in chemistry. Coord Chem Rev 352:401–423

    Article  CAS  Google Scholar 

  4. Lobinski R (1997) Elemental speciation and coupled techniques. Appl Spectrosc 51(7):260A–278A

    Article  CAS  Google Scholar 

  5. Sadee B, Foulkes ME, Hill SJ (2015) Coupled techniques for arsenic speciation in food and drinking water: a review. J Anal At Spectrom 30(1):102–118

    Article  CAS  Google Scholar 

  6. Zhang H, Davison W (2015) Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability. Environ Chem 12(2):85–101

    Article  CAS  Google Scholar 

  7. Michalke B, Willkommen D, Drobyshev E, Solovyev N (2018) The importance of speciation analysis in neurodegeneration research. TrAC Trends Anal Chem 104:160–170

    Article  CAS  Google Scholar 

  8. Oliveira CS, Piccoli BC, Aschner M, Rocha JBT (2017) Chemical speciation of selenium and mercury as determinant of their neurotoxicity. In: Aschner M, Costa LG (eds) Neurotoxicity of metals. Springer, Cham, pp 53–83

    Chapter  Google Scholar 

  9. Sabri YM, Ippolito SJ, Tardio J, Abd Hamid SB, Bhargava SK (2015) Mercury migration and speciation study during monoethylene glycol regeneration processes. Ind Eng Chem Res 54(19):5349–5355

    Article  CAS  Google Scholar 

  10. Córdoba P (2017) Partitioning and speciation of selenium in wet limestone flue gas desulphurisation systems: a review. Fuel 202:184–195

    Article  Google Scholar 

  11. Bard AJ, Faulkner LR (2001) Electrochemical methods : fundamentals and applications. Wiley, New York

    Google Scholar 

  12. Shao Y, Osborne MD, Girault HH (1991) Assisted ion transfer at micro-ITIES supported at the tip of micropipettes. J Electroanal Chem 318(1-2):101–109

    Article  CAS  Google Scholar 

  13. Laborda E, Olmos JM, Molina A (2016) Transfer of complexed and dissociated ionic species at soft interfaces: a voltammetric study of chemical kinetic and diffusional effects. Phys Chem Chem Phys 18(15):10158–10172

    Article  CAS  Google Scholar 

  14. Molina A, Olmos JM, Laborda E, Gómez-Gil JM, González J (2016) Voltammetry of the aqueous complexation--dissociation coupled to transfer (ACDT) mechanism with charged ligands. Phys Chem Chem Phys 18(25):17091–17104

    Article  CAS  Google Scholar 

  15. Hanzlík J, Hovorka J, Camus AM (1987) Transfer of trisbipyridine transition metal complexes across the water-dichloroethane interface. Collect Czechoslov Chem Commun 52(4):838–847

    Article  Google Scholar 

  16. Deryabina MA, Hansen SH, Østergaard J, Jensen H (2009) Effect of α-cyclodextrin on drug distribution studied by electrochemistry at interfaces between immiscible electrolyte solutions. J Phys Chem B 113(20):7263–7269

  17. Baruzzi AM, Wendt H (1990) Interfacial phase transfer of amino-complexed Ni (II) cations: a model for solvent extraction of transition metals. J Electroanal Chem Interfacial Electrochem 279(1-2):19–30

    Article  CAS  Google Scholar 

  18. Das NR, Bhattacharyya SN (1976) Solvent extraction of gold. Talanta 23(7):535–540

    Article  CAS  Google Scholar 

  19. Ding Z, Reymond F, Baumgartner P, Fermı́n DJ, Brevet PF, Carrupt PA, Girault HH (1998) Mechanism and dynamics of methyl and ethyl orange transfer across the water/1, 2-dichloroethane interface. Electrochim Acta 44(1):3–13

    Article  CAS  Google Scholar 

  20. Horrocks BR, Mirkin MV (1998) Cation binding to DNA studied by ion-transfer voltammetry at micropipets. Anal Chem 70(22):4653–4660

    Article  CAS  Google Scholar 

  21. Moretto LM, Kalcher K (2014) Environmental analysis by electrochemical sensors and biosensors. Springer, New York

    Book  Google Scholar 

  22. Torralba E, Ortuño JA, Molina A, Serna C, Karimian F (2014) Facilitated ion transfer of protonated primary organic amines studied by square wave voltammetry and chronoamperometry. Anal Chim Acta 826:12–20

    Article  CAS  Google Scholar 

  23. Ortuño JA, Olmos JM, Torralba E, Molina A (2016) Sensing and characterization of neurotransmitter 2-phenylethylamine based on facilitated ion transfer at solvent polymeric membranes using different electrochemical techniques. Sensors Actuators B Chem 222:930–936

    Article  Google Scholar 

  24. Ribeiro JA, Miranda IM, Silva F, Pereira CM (2010) Electrochemical study of dopamine and noradrenaline at the water/1, 6-dichlorohexane interface. Phys Chem Chem Phys 12(46):15190–15194

    Article  CAS  Google Scholar 

  25. Nishi N, Murakami H, Imakura S, Kakiuchi T (2006) Facilitated transfer of alkali-metal cations by dibenzo-18-crown-6 across the electrochemically polarized interface between an aqueous solution and a hydrophobic room-temperature ionic liquid. Anal Chem 78(16):5805–5812

    Article  CAS  Google Scholar 

  26. Reymond F, Lagger G, Carrupt P-A, Girault HH (1998) Facilitated ion transfer reactions across oil|water interfaces: Part II. Use of the convoluted current for the calculation of the association constants and for an amperometric determination of the stoichiometry of MLjz+ complexes. J Electroanal Chem 451(1-2):59–76

    Article  CAS  Google Scholar 

  27. Molina A, González J (2016) Pulse voltammetry in physical electrochemistry and electroanalysis. Springer International Publishing, Cham

    Book  Google Scholar 

  28. Molina A, Moreno MM, López-Tenés M, Serna C (2002) Study of an EE mechanism in additive differential pulse techniques. Electrochem Commun 4(5):457–461

    Article  CAS  Google Scholar 

  29. Molina A, González J, Laborda E, Compton RG (2012) Additive differential double pulse voltammetry applied to the study of multistep electron transfer reactions with microelectrodes of different geometries. Int J Electrochem Sci 7:5765–5778

    CAS  Google Scholar 

  30. Molina A, Moreno MM, Serna C, Camacho L (2001) Additive differential pulse voltammetry, instead of double differential pulse voltammetry. Electrochem Commun 3(7):324–329

    Article  CAS  Google Scholar 

  31. Molina A, Morales I (2007) Comparison between derivative and differential pulse voltammetric curves of EC, CE and catalytic processes at spherical electrodes and microelectrodes. Int J Electrochem Sci 2:386–405

    CAS  Google Scholar 

  32. Molina A, Morales I, López-Tenés M (2006) Chronoamperometric behaviour of a CE process with fast chemical reactions at spherical electrodes and microelectrodes. Comparison with a catalytic reaction. Electrochem Commun 8:1062–1070

    Article  CAS  Google Scholar 

  33. Martínez-Ortiz F, Zoroa N, Molina A, Serna C, Laborda E (2009) Electrochemical digital simulations with an exponentially expanding grid: general expressions for higher order approximations to spatial derivatives: the special case of four-point formulas and their application to multipulse techniques in planar and any. Electrochim Acta 54(3):1042–1055

    Article  Google Scholar 

  34. Girault HH (2011) Electrochemical database-Gibbs energies of transfer. http://sbsrv7.epfl.ch/instituts/isic/lepa/cgi/DB/InterrDB.pl. Accessed 28 Mar 2020

  35. Sakae H, Nagatani H, Imura H (2016) Ion transfer and adsorption behavior of ionizable drugs affected by PAMAM dendrimers at the water|1,2- dichloroethane interface. Electrochim Acta 191:631–639

    Article  CAS  Google Scholar 

  36. Morales I, Molina A (2006) Analytical expressions of the I--E--t curves of a CE process with a fast chemical reaction at spherical electrodes and microelectrodes. Electrochem Commun 8(9):1453–1460

    Article  CAS  Google Scholar 

  37. Molina A, Ortuño JA, Serna C, Torralba E (2010) Physical insights of salt transfer through solvent polymeric membranes by means of electrochemical methods. Phys Chem Chem Phys 12(40):13296–13303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AM and EL greatly appreciate the financial support provided by the Fundacion Séneca de la Región de Murcia (Project 19887/GERM/15). JMO indicates that this work is the result of a grant for the posdoctoral training and development abroad, funded by the Counseling of Employment, Business and Environment of the CARM, through the Fundacion Séneca de la Región de Murcia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Molina.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 540 kb)

Appendix

Appendix

Variables

A :

Area of the interface

c :

Sum of the initial concentrations of transferable species in the aqueous phase

\( {c}_{\mathrm{i}}^{\ast } \) :

Initial equilibrium concentration of species i in the aqueous phase (i = X, XL, L)

\( {D}_{\mathrm{i}}^{\upalpha} \) :

Diffusion coefficient of species i in phase α(= w, o)

D α :

Diffusion coefficient of the free and complexed species in phase α (\( {D}^{\upalpha}={D}_{\mathrm{X}}^{\upalpha}={D}_{\mathrm{X}\mathrm{L}}^{\upalpha} \))

E 1 :

First potential pulse applied in DDPV and ADPV

E 1/2 :

Half-wave potential

E c :

Zero-crossing potential in ADPV

E peak :

Peak potential in DDPV

E valley :

Potential of the valley between two peaks in DDPV

F :

Faraday constant

I 1 :

Current measured at the end of the first potential pulse

I 2 :

Current measured at the end of the second potential pulse

I ADPV :

Current response in ADPV

\( {I}_{\mathrm{lim}}^{(1)} \) :

Limiting current of the first wave obtained in NPV

I lim :

Total limiting current of the NPV curve

k 1 :

Forward rate constant (M−1s‐1)

k 2 :

Backward rate constant (s‐1)

K :

Apparent equilibrium constant under excess of ligand (\( ={K}_{\mathrm{c}}{c}_{\mathrm{L}}^{\ast } \))

K c :

Chemical equilibrium constant based on concentrations (M−1)

R :

Molar gas constant

T :

Absolute temperature

t :

Electrolysis time

z i :

Ionic charge number of species i

\( {\Delta}_{\mathrm{O}}^{\mathrm{W}}{\phi}_{\mathrm{i}}^{0\prime } \) :

Formal transfer potential of species i

ΔE:

Pulse amplitude

ΔIDDPV:

Current response in DDPV

τ :

Duration of the potential pulses applied in NPV

τ 1 :

Duration of the first potential pulse applied in DDPV and ADPV

τ 2 :

Duration of the second potential pulse applied in DDPV and ADPV

Functions

$$ \mathit{\operatorname{erfc}}(x)=1-\frac{2}{\sqrt{\pi }}{\int}_0^x{e}^{-{t}^2} dt $$
$$ {E}_{1/2}^{\mathrm{i}}={\Delta}_{\mathrm{O}}^{\mathrm{W}}{\phi}_{\mathrm{i}}^{0\hbox{'}}+\frac{RT}{z_{\mathrm{i}}F}\ln \sqrt{\frac{D^{\mathrm{W}}}{D^{\mathrm{O}}}};i=X, XL $$
$$ F\left({\chi}_{\mathrm{j}}\right)=\frac{\sqrt{\pi }}{2}{\chi}_{\mathrm{j}}{e}^{{\left(\frac{\chi_{\mathrm{j}}}{2}\right)}^2}\mathit{\operatorname{erfc}}\left(\frac{\chi_{\mathrm{j}}}{2}\right);j=1,2 $$
$$ {I}_{\mathrm{d}}\left({z}_{\mathrm{X}},{c}^{\ast}\right)={z}_{\mathrm{X}} FA{c}^{\ast}\sqrt{\frac{D^{\mathrm{W}}}{\pi t}} $$
$$ {I}_{\mathrm{d},2}\left({z}_{\mathrm{X}},{c}^{\ast}\right)={z}_{\mathrm{X}} FA{c}^{\ast}\sqrt{\frac{D^{\mathrm{W}}}{\pi {t}_2}} $$
$$ {k}_1^{\prime }={k}_1{c}_{\mathrm{L}}^{\ast } $$
$$ \alpha ={e}^{\eta_{1/2,\mathrm{X}}^{(2)}}\left({e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}}-{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(2)}}\right)\left(1+{e}^{\eta_{1/2,\mathrm{X}}^{(1)}}\right)-{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(2)}}\left({e}^{\eta_{1/2,\mathrm{X}}^{(1)}}-{e}^{\eta_{1/2,\mathrm{X}}^{(2)}}\right)\left(1+{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}}\right) $$
$$ \beta =\left({e}^{\eta_{1/2,\mathrm{X}}^{(1)}}-{e}^{\eta_{1/2,\mathrm{X}}^{(2)}}\right)\left(1+{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}}\right)\left(1+{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(2)}}\right)+\left({e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}}-{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(2)}}\right)\left(1+{e}^{\eta_{1/2,\mathrm{X}}^{(1)}}\right)\left(1+{e}^{\eta_{1/2,\mathrm{X}}^{(2)}}\right) $$
$$ \varDelta {e}^{\eta_{1/2}^{\left(\mathrm{j}\right)}}={e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{\left(\mathrm{j}\right)}}-{e}^{\eta_{1/2,\mathrm{X}}^{\left(\mathrm{j}\right)}};j=1,2;i=X, XL $$
$$ {\varepsilon}_{\mathrm{j}}=1+{e}^{\eta_{1/2,\mathrm{X}}^{\left(\mathrm{j}\right)}}+K\left(1+{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{\left(\mathrm{j}\right)}}\right) $$
$$ {\eta}_{1/2,\mathrm{i}}^{\left(\mathrm{j}\right)}=\frac{z_{\mathrm{i}}F}{RT}\left({E}_{\mathrm{j}}-{E}_{1/2}^{\left(\mathrm{i}\right)}\right) $$
$$ {\theta}_{\mathrm{j}}=K{e}^{\eta_{1/2,\mathrm{X}}^{\left(\mathrm{j}\right)}}+{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{\left(\mathrm{j}\right)}}+{e}^{\eta_{1/2,\mathrm{X}}^{\left(\mathrm{j}\right)}}{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{\left(\mathrm{j}\right)}}\left(1+K\right) $$
$$ \kappa ={k}_1^{\prime }+{k}_2 $$
$$ \lambda =\frac{e^{\eta_{1/2,\mathrm{X}}^{(1)}}\left(1+{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}}\right)-\frac{z_{\mathrm{X}\mathrm{L}}}{z_{\mathrm{X}}}{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}}\left(1+{e}^{\eta_{1/2,\mathrm{X}}^{(1)}}\right)}{1+{e}^{\eta_{1/2,\mathrm{X}}^{(1)}}+K\left(1+{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}}\right)} $$
$$ \mu =\left({e}^{\eta_{1/2,\mathrm{X}}^{(1)}}-{e}^{\eta_{1/2,\mathrm{X}}^{(2)}}\right)\left(1+{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(2)}}\right)-\left({e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}}-{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(2)}}\right)\left(1+{e}^{\eta_{1/2,\mathrm{X}}^{(2)}}\right) $$
$$ \varphi ={e}^{\eta_{1/2,\mathrm{X}}^{(2)}}{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(2)}}\left(1+K\right)-{e}^{\eta_{1/2,\mathrm{X}}^{(1)}}{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(2)}}-K{e}^{\eta_{1/2,\mathrm{X}}^{(2)}}{e}^{\eta_{1/2,\mathrm{X}\mathrm{L}}^{(1)}} $$
$$ {\chi}_1=\frac{2{\varepsilon}_1\sqrt{\kappa t}}{\theta_1} $$
$$ {\chi}_1^{\prime }=\frac{2\sqrt{\kappa t}}{K} $$
$$ {\chi}_2=\frac{2{\varepsilon}_2\sqrt{\kappa {t}_2}}{\theta_2} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olmos, J.M., Laborda, E. & Molina, A. Differential double pulse voltammetry (DDPV) and additive differential pulse voltammetry (ADPV) applied to the study of the ACDT mechanism. J Solid State Electrochem 24, 2819–2831 (2020). https://doi.org/10.1007/s10008-020-04619-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04619-w

Keywords

Navigation