Skip to main content
Log in

Effects of Coagulation Residence Time on the Morphology and Properties of Poly (vinyl) Alcohol (PVA) Asymmetric Membrane via NIPS Method for O2/N2 Separation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study revealed, a thorough investigation of coagulation residence time effects on the morphology, crystallinity, mechanical properties and oxygen (O2), nitrogen (N2) gas transport behaviour of asymmetric membranes prepared through PVA/water/THF ternary system using non-solvent induced phase separation method. For this purpose PVA asymmetric membranes were fabricated at different coagulation residence of 3–24 h and then evaluated using various analytical techniques. The scanning electron microscopy was utilised to observe membrane morphologies to determine the membrane matrix structure, pore size distribution and bi-layer thickness ratio. X-ray diffraction was employed to examine the crystallinity of membranes. The variation in overall porosity and mechanical characteristics were investigated through gravimetric based analysis and universal testing machine respectively. Whereas, O2 and N2 gas transport behaviour of asymmetric membranes was recorded using gas permeation testing unit. The results showed that different sponge type, interconnected porous membranes, having thin durable dense layer morphology were obtained by varying residence time of coagulation process at constant temperature and concentration. A shorter residence time favoured the formation of single chain porous network having small pores size (1–2 μm) with porosity of 56.31% and thicker dense layer, having low O2 gas permeation rate and high mechanical characteristics such as tensile strength and elongation at break. However, a long residence time in coagulation bath facilitated the formation of double chain more porous network having pores size distribution between 2 and 3 μm with porosity of 75.52% and thinner dense layer, having high O2 gas permeation rate. The tensile strength of membranes is high in-spite of higher porosity and lower thickness of dense layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kim IC, Yoon HG, Lee KH (2002) Formation of integrally skinned asymmetric polyetherimide nanofiltration membranes by phase inversion process. J Appl Polym Sci 84(6):1300–1307

    Article  CAS  Google Scholar 

  2. Jiang LY (2016) Asymmetric membrane. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin, pp 126–127. https://doi.org/10.1007/978-3-662-44324-8_1762

    Chapter  Google Scholar 

  3. Dai Z, Ansaloni L, Deng L (2016) Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review. Green Energy Environ 1(2):102–128

    Article  Google Scholar 

  4. Peng Y, Fan H, Dong Y, Song Y, Han H (2012) Effects of exposure time on variations in the structure and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation. Appl Surf Sci 258(20):7872–7881

    Article  CAS  Google Scholar 

  5. Tasselli F (2014) Non-solvent induced phase separation process (NIPS) for membrane preparation. Encycl Membr 1–3

  6. Kausar A (2017) Phase inversion technique-based polyamide films and their applications: a comprehensive review. Polym-Plast Technol Eng 56(13):1421–1437

    Article  CAS  Google Scholar 

  7. Guillen GR, Pan Y, Li M, Hoek EM (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50(7):3798–3817

    Article  CAS  Google Scholar 

  8. Mulder M (2000) Membrane preparation/phase inversion membranes. Encyclopedia of separation science. Academic Press, New York. https://doi.org/10.1016/b0-12-226770-2/05271-6

    Book  Google Scholar 

  9. Pinnau I, Freeman BD (1999) Formation and Modification Of Polymeric Membranes: Overview. In: Membrane formation and modification. ACS Symposium Series, vol 744. American Chemical Society, pp 1–22. https://doi.org/10.1021/bk-2000-0744.ch001

  10. Basu S, Cano-Odena A, Vankelecom IF (2010) Asymmetric membrane based on Matrimid® and polysulphone blends for enhanced permeance and stability in binary gas (CO2/CH4) mixture separations. Sep Purif Technol 75(1):15–21

    Article  CAS  Google Scholar 

  11. Mohamed F, Hasbullah H, Jami'an W, Salleh W, Ibrahim N, Ali R (2016) Effect of coagulant bath on the gas permeation properties of cellulose acetate asymmetric membrane. In: IOP conference series: earth and environmental science. vol 1. IOP Publishing, p 012009

  12. Kawakami H, Mikawa M, Nagaoka S (1996) Gas permeability and selectivity through asymmetric polyimide membranes. J Appl Polym Sci 62(7):965–971

    Article  CAS  Google Scholar 

  13. Pesek S, Koros W (1994) Aqueous quenched asymmetric polysulfone hollow fibers prepared by dry/wet phase separation. J Membr Sci 88(1):1–19

    Article  CAS  Google Scholar 

  14. Ng B, Ismail A, Rahman WA, Hasbullah H, Abdullah M, Hassan A (2004) Formation of asymmetric polysulfone flat sheet membrane for gas separation: rheological assessment. Jurnal Teknologi 41(1):73–88

    Article  Google Scholar 

  15. Chae S-K, Mun CH, Noh D-Y, Kang E, Lee S-H (2014) Simple fabrication method for a porous poly (vinyl alcohol) matrix by multisolvent mixtures for an air-exposed model of the lung epithelial system. Langmuir 30(41):12107–12113

    Article  CAS  Google Scholar 

  16. Borandeh S, Abdolmaleki A, Sadeghi M (2019) Poly (vinyl alcohol)/methoxy poly (ethylene glycol) methacrylate-TiO2 nanocomposite as a novel polymeric membrane for enhanced gas separation. J Iran Chem Soc 16(3):523–533

    Article  CAS  Google Scholar 

  17. Haraya K, Hwang S-T (1992) Permeation of oxygen, argon and nitrogen through polymer membranes. J Membr Sci 71(1–2):13–27

    Article  CAS  Google Scholar 

  18. Han M-J, Bhattacharyya D (1995) Changes in morphology and transport characteristics of polysulfone membranes prepared by different demixing conditions. J Membr Sci 98(3):191–200

    Article  CAS  Google Scholar 

  19. Strathmann H, Kock K, Amar P, Baker R (1975) The formation mechanism of asymmetric membranes. Desalination 16(2):179–203

    Article  CAS  Google Scholar 

  20. Smolders C, Reuvers A, Boom R, Wienk I (1992) Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J Membr Sci 73(2–3):259–275

    Article  CAS  Google Scholar 

  21. Boom R, Wienk I, Van den Boomgaard T, Smolders C (1992) Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J Membr Sci 73(2–3):277–292

    Article  CAS  Google Scholar 

  22. Ray RJ, Krantz WB, Sani RL (1985) Linear stability theory model for finger formation in asymmetric membranes. J Membr Sci 23(2):155–182

    Article  CAS  Google Scholar 

  23. Matz R (1972) The structure of cellulose acetate membranes 1. The development of porous structures in anisotropic membranes. Desalination 10(1):1–15

    Article  CAS  Google Scholar 

  24. M’barki O, Bouyer D, Faur C, Deratani A, Guenoun P, Pochat-Bohatier C (2012) Elaboration of porous PVA membrane by TIPS-LCST process without using organic solvent. Procedia Eng 44:1275–1277

    Article  Google Scholar 

  25. Ahmad A, Yusuf N, Ooi B (2012) Preparation and modification of poly (vinyl) alcohol membrane: effect of crosslinking time towards its morphology. Desalination 287:35–40

    Article  CAS  Google Scholar 

  26. Park J-C, Ito T, Kim K-O, Kim K-W, Kim B-S, Khil M-S, Kim H-Y, Kim I-S (2010) Electrospun poly(vinyl alcohol) nanofibers: effects of degree of hydrolysis and enhanced water stability. Polym J 42(3):273–276. https://doi.org/10.1038/pj.2009.340

    Article  CAS  Google Scholar 

  27. Kim S-G, Lee K-H (2009) Poly (vinyl alcohol) membranes having an integrally skinned asymmetric structure. Mol Cryst Liq Cryst 512(1):32

    Article  CAS  Google Scholar 

  28. Mulder M (1996) Basic principles of membrane technology, 2nd edn. Springer, Netherlands. https://doi.org/10.1007/978-94-009-1766-8

    Book  Google Scholar 

  29. Hansen CM (2007) Hansen solubility parameters: a user's handbook, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  30. Lara J, Zimmermann F, Drolet D, Hansen CM, Chollot A, Monta N (2017) The use of the Hansen solubility parameters in the selection of protective polymeric materials resistant to chemicals. Int J Curr Res 9(3):47860–47867

    CAS  Google Scholar 

  31. Iqbal H, Farrukh S, Hussain A, Hassan A, Hailegiorgis SM (2019) Pursuance of piper nigrum and cinnamomum verum on poly vinyl alcohol-starch hydrogel membrane. J Chem Soc Pak 41(3):489–500

    CAS  Google Scholar 

  32. Rashid MH, Farrukh S, Javed S, Hussain A, Fan X, Ali S, Ayoub M (2020) Synthesis and gas permeation analysis of TiO2 nanotube-embedded cellulose acetate mixed matrix membranes. Chem Pap 74(3):821–828

    Article  CAS  Google Scholar 

  33. Lu X, Li X (2009) Preparation of polyvinylidene fluoride membrane via a thermally induced phase separation using a mixed diluent. J Appl Polym Sci 114(2):1213–1219

    Article  CAS  Google Scholar 

  34. Farrukh S, Minhas FT, Hussain A, Memon S, Bhanger M, Mujahid M (2014) Preparation, characterization, and applicability of novel calix [4] arene-based cellulose acetate membranes in gas permeation. J Appl Polym Sci. https://doi.org/10.1002/app.39985

    Article  Google Scholar 

  35. Rehman A, Farrukh S, Hussain A, Fan X, Pervaiz E (2019) Adsorption of CO2 on amine-functionalized green metal-organic framework: an interaction between amine and CO2 molecules. Environ Sci Pollut Res 26(36):36214–36225

    Article  CAS  Google Scholar 

  36. Salahuddin Z, Farrukh S, Hussain A (2018) Optimization study of polyethylene glycol and solvent system for gas permeation membranes. Int J Polym Anal Charact 23(5):483–492. https://doi.org/10.1080/1023666X.2018.1485613

    Article  CAS  Google Scholar 

  37. Hemalatha K, Rukmani K, Suriyamurthy N, Nagabhushana B (2014) Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study. Mater Res Bull 51:438–446

    Article  CAS  Google Scholar 

  38. Mansour A, Mansour S, Abdo M (2015) Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J Appl Phys 7(2):60–69

    Google Scholar 

  39. Abdullah OG, Aziz SB, Rasheed MA (2016) Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte. Results Phys 6:1103–1108

    Article  Google Scholar 

  40. Hema M, Selvasekarapandian S, Arunkumar D, Sakunthala A, Nithya H (2009) FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X= Cl, Br, I). J Non-Cryst Solids 355(2):84–90

    Article  CAS  Google Scholar 

  41. Nasar G, Khan MS, Khalil U (2009) Structural study of PVA composites with inorganic salts by X-ray diffraction. J Pak Mater Soc 3:67–70

    Google Scholar 

  42. Ziegel K (1971) Gas transport in segmented block copolymers. J Macromol Sci Part B 5(1):11–21

    Article  CAS  Google Scholar 

  43. Eusébio TM, Faria M, Filipe EJ, de Pinho MN Polyurethane urea membranes for membrane blood oxygenators: synthesis and gas permeation properties. In: 2019 IEEE 6th Portuguese meeting on bioengineering (ENBENG), 2019. IEEE, pp 1–4

  44. Rozuki N, Tajuddin M, Yusof N (2018) Effect of different solvent on asymmetric polysulfone (PSf) membranes for CO2/CH4 separation. Env Ecosyst Sci 2(2):1114

    Article  Google Scholar 

  45. Baker RW (2012) Membrane Technology And Applications, 3rd edn. Wiley, Newark

    Book  Google Scholar 

  46. Raza A, Farrukh S, Hussain A (2017) Synthesis, characterization and NH3/N2 gas permeation study of nanocomposite membranes. J Polym Environ 25(1):46–55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We like to acknowledge the support of MEMAR Lab at School of Chemical and Material Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan.

Funding

This research work was supported by MEMAR Lab of School of Chemical and Material Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Farrukh.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karim, S.S., Hussain, A., Farrukh, S. et al. Effects of Coagulation Residence Time on the Morphology and Properties of Poly (vinyl) Alcohol (PVA) Asymmetric Membrane via NIPS Method for O2/N2 Separation. J Polym Environ 28, 2810–2822 (2020). https://doi.org/10.1007/s10924-020-01816-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01816-6

Keywords

Navigation