Skip to main content

Advertisement

Log in

Production, thermal and dielectrical properties of Ag-doped nano-strontium apatite and nano h-BN filled poly(4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate) composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In present study, 4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate (AC-TMC) monomer was synthesized from the reaction of trimethoxy-substituted hydroxy chalcone and acryloyl chloride in the presence of triethylamine. The polymerization of AC-TMC was carried out by the free radical polymerization method at 60 °C. Monomer and polymer structures were confirmed by FT-IR, 1H-NMR, 13C-NMR spectroscopy techniques. Polymer composites were filled successfully with Ag doped nano-strontium apatite (Sr-Ag) and nano hexagonal boron nitride (h-BN). Characterization of polymer composites was accomplished using FT-IR, XRD and SEM techniques. Thermal analyzes of polymer and polymer composites were performed in nitrogen atmosphere using thermogravimetry (TGA) and differential scanning calorimetry analysis (DSC) techniques. The dielectric properties of composites were investigated by impedance analyzer in a range of 1 kHz-1 MHz frequency at room temperature. The results showed that with the increasing content of h-BN particles, the glass-transition temperature (Tg) of composites was increased obviously. Moreover, the added h-BN fillers increased the thermal stability of polymer significantly. The dielectric properties of polymer composite were enhanced by adding both Sr-Ag and h-BN fillers. The produced polymer composites can find applications in orthopedic, dental implants and medical field as biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4

    CAS  PubMed  Google Scholar 

  2. Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohydr Polym 93(1):256–262

    CAS  PubMed  Google Scholar 

  3. Don TM, King CF, Chiu WY (2002) Synthesis and properties of chitosan-modified poly (vinyl acetate). J Appl Polym Sci 86(12):3057–3063

    CAS  Google Scholar 

  4. Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28(22):3338–3348

    CAS  PubMed  Google Scholar 

  5. Pezzotti G, Asmus S (2001) Fracture behavior of hydroxyapatite/polymer interpenetrating network composites prepared by in situ polymerization process. Mater Sci Eng A 316(1–2):231–237

    Google Scholar 

  6. Chan KW, Wong HM, Yeung KWK, Tjong SC (2015) Polypropylene biocomposites with boron nitride and nanohydroxyapatite reinforcements. Materials 8(3):992–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramesh N, Moratti SC, Dias GJ (2018) Hydroxyapatite–polymer biocomposites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater 106(5):2046–2057

    CAS  PubMed  Google Scholar 

  8. Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6(9):3524–3533

    CAS  PubMed  Google Scholar 

  9. Chadda H, Shahar P, Satapathy BK, Ray AR (2016) Filler-immobilization assisted designing of hydroxyapatite and silica/hydroxyapatite filled acrylate based dental restorative composites: comparative evaluation of quasi-static and dynamic mechanical properties. J Polym Res 23(9):197

    Google Scholar 

  10. Pogosova M, González L (2018) Influence of anion substitution on the crystal structure and color properties of copper-doped strontium hydroxyapatite. Ceram Int 44(16):20140–20147

    CAS  Google Scholar 

  11. Hidouri M, Dorozhkin SV (2018) Structure and thermal stability of sodium and carbonate-co-substituted strontium hydroxyfluorapatites. New J Chem 42(11):8469–8477

    CAS  Google Scholar 

  12. Kamaei M, Fathi M H. Preparation and characterization of strontium-fluorapatite nanopowders by sol-gel method. In AIP Conference Proceedings. 2018. AIP Publishing LLC

  13. Antony GJM, Aruna S, Raja S (2018) Enhanced mechanical properties of acrylate based shape memory polymer using grafted hydroxyapatite. J Polym Res 25(5):120

    Google Scholar 

  14. Nasker P, Mukherjee M, Kant S, Tripathy S, Sinha A, Das M (2018) Fluorine substituted nano hydroxyapatite: synthesis, bio-activity and antibacterial response study. Ceram Int 44(17):22008–22013

    CAS  Google Scholar 

  15. Sheikh L, Sinha S, Singhababu Y, Verma V, Tripathy S, Nayar S (2018) Traversing the profile of biomimetically nanoengineered iron substituted hydroxyapatite: synthesis, characterization, property evaluation, and drug release modeling. RSC Adv 8(35):19389–19401

    CAS  Google Scholar 

  16. Huang J, Huang Z, Yao D, Wu C, Cheng Y, Wu F (2019) Crystallization process and growth mechanism for hexagonal prism of strontium hydroxyapatite by urea hydrolysis. J Cryst Growth 512:105–111

    CAS  Google Scholar 

  17. Ma X, Liu Y, Zhu B (2018) Synthesis and characterization of pure strontium apatite particles and nanoporous scaffold prepared by dextrose-templated method. Mater Res Exp 5(2):025002

    Google Scholar 

  18. Zhang S, Cui F, Liao S, Zhu Y, Han L (2003) Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite. J Mater Sci Mater Med 14(7):641–645

    CAS  PubMed  Google Scholar 

  19. Chen L, Mccrate JM, Lee JC, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22(10):105708

    PubMed  PubMed Central  Google Scholar 

  20. Shen Y, Liu J, Lin K, Zhang W (2012) Synthesis of strontium substituted hydroxyapatite whiskers used as bioactive and mechanical reinforcement material. Mater Lett 70:76–79

    CAS  Google Scholar 

  21. Tofail MS, Haverty D, Stanton K, McMonagle J (2005) Structural order and dielectric behaviour of hydroxyapatite. Ferroelectrics 319(1):117–123

    Google Scholar 

  22. Kaygili O, Dorozhkin SV, Ates T, Al-Ghamdi AA, Yakuphanoglu F (2014) Dielectric properties of Fe doped hydroxyapatite prepared by sol–gel method. Ceram Int 40(7):9395–9402

    CAS  Google Scholar 

  23. Rameshbabu N, Sampath Kumar T, Prabhakar T, Sastry V, Murty K, Prasad Rao K (2007) Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res A 80(3):581–591

    CAS  PubMed  Google Scholar 

  24. Ravi ND, Balu R, Sampath Kumar T (2012) Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J Am Ceram Soc 95(9):2700–2708

    CAS  Google Scholar 

  25. Ciobanu C, Iconaru S, Pasuk I, Vasile B, Lupu A, Hermenean A, Dinischiotu A, Predoi D (2013) Structural properties of silver doped hydroxyapatite and their biocompatibility. Mater Sci Eng C 33(3):1395–1402

    CAS  Google Scholar 

  26. Shkir M, Kilany M, Yahia I (2017) Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: a systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram Int 43(17):14923–14931

    CAS  Google Scholar 

  27. Kaygili O, Dorozhkin SV, Ates T, Gursoy NC, Keser S, Yakuphanoglu F, Selcuk AB (2015) Structural and dielectric properties of yttrium-substituted hydroxyapatites. Mater Sci Eng C 47:333–338

    CAS  Google Scholar 

  28. Badran H, Yahia I, Hamdy MS, Awwad N (2017) Lithium-doped hydroxyapatite nano-composites: synthesis, characterization, gamma attenuation coefficient and dielectric properties. Radiat Phys Chem 130:85–91

    CAS  Google Scholar 

  29. Alshemary AZ, Akram M, Goh Y-F, Kadir MRA, Abdolahi A, Hussain R (2015) Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. J Alloys Compd 645:478–486

    CAS  Google Scholar 

  30. Riaz M, Zia R, Ijaz A, Hussain T, Mohsin M, Malik A (2018) Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity. Mater Sci Eng C 90:308–313

    CAS  Google Scholar 

  31. Mondal S, Hoang G, Manivasagan P, Moorthy MS, Phan TTV, Kim HH, Nguyen TP, Oh J (2019) Rapid microwave-assisted synthesis of gold loaded hydroxyapatite collagen nano-bio materials for drug delivery and tissue engineering application. Ceram Int 45(3):2977–2988

    CAS  Google Scholar 

  32. Leena M, Rana D, Webster TJ, Ramalingam M (2016) Accelerated synthesis of biomimetic nano hydroxyapatite using simulated body fluid. Mater Chem Phys 180:166–172

    CAS  Google Scholar 

  33. Sanosh K, Chu M-C, Balakrishnan A, Lee Y-J, Kim T, Cho S-J (2009) Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 9(6):1459–1462

    Google Scholar 

  34. dos Santos SA, Rodrigues BVM, Oliveira FC, Carvalho JO, de Vasconcellos LMR, de Araújo JCR, Marciano FR, Lobo AO (2019) Characterization and in vitro and in vivo assessment of poly (butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J Polym Res 26(2):53

    Google Scholar 

  35. Fernando MS, de Silva RM, De Silva KN (2015) Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions. Appl Surf Sci 351:95–103

    CAS  Google Scholar 

  36. Nosrati H, Mamoory RS, Dabir F, Perez MC, Rodriguez MA, Le DQS, Bünger CE (2019) In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydrothermal process. Mater Chem Phys 222:251–255

    CAS  Google Scholar 

  37. Baggio R, Brovelli F, Moreno Y, Pinto M, Soto-Delgado J (2016) Structural, electrochemical and theoretical study of a new chalcone derivative containing 3-thiophene rings. J Mol Struct 1123:1–7

    CAS  Google Scholar 

  38. Koran K, Tekin Ç, Biryan F, Tekin S, Sandal S, Görgülü AO (2017) Synthesis, structural and thermal characterizations, dielectric properties and in vitro cytotoxic activities of new 2, 2, 4, 4-tetra (4′-oxy-substituted-chalcone)-6, 6-diphenylcyclotriphosphazene derivatives. Med Chem Res 26(5):962–974

    CAS  Google Scholar 

  39. Nowakowska Z, Kędzia B, Schroeder G (2008) Synthesis, physicochemical properties and antimicrobial evaluation of new (E)-chalcones. Eur J Med Chem 43(4):707–713

    CAS  PubMed  Google Scholar 

  40. de Campos-Buzzi F, Pereira de Campos J, Pozza Tonini P, Corrêa R, Augusto Yunes R, Boeck P, Cechinel-Filho V (2006) Antinociceptive effects of synthetic chalcones obtained from xanthoxyline. Archiv der Pharmazie: An Int J Pharm Med Chem 339(7):361–365

    Google Scholar 

  41. Ortolan XR, Fenner BP, Mezadri TJ, Tames DR, Corrêa R, de Campos BF (2014) Osteogenic potential of a chalcone in a critical-size defect in rat calvaria bone. J Cranio-Maxillofac Surg 42(5):520–524

    Google Scholar 

  42. Tozar A, Karahan İH (2018) A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Appl Surf Sci 452:322–336

    CAS  Google Scholar 

  43. Ozbek B, Erdogan B, Ekren N, Oktar FN, Akyol S, Ben-Nissan B, Sasmazel HT, Kalkandelen C, Mergen A, Kuruca SE (2018) Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. J Aust Ceram Soc 54(2):251–260

    CAS  Google Scholar 

  44. Sanchez AG, Prokhorov E, Luna-Barcenas G, Mora-García AG, Kovalenko Y, Miñoz EMR, Raucci MG, Buonocore G (2018) Chitosan-hydroxyapatite nanocomposites: effect of interfacial layer on mechanical and dielectric properties. Mater Chem Phys 217:151–159

    Google Scholar 

  45. Hoepfner TP, Case ED (2002) The porosity dependence of the dielectric constant for sintered hydroxyapatite. J Biomed Mater Res: An Of J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Kor Soc Biomater 60(4):643–650

    CAS  Google Scholar 

  46. Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR (2006) Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem 14(10):3491–3495

    CAS  PubMed  Google Scholar 

  47. Biryan F, Demirelli K (2019) Thermal degradation kinetic, electrical and dielectric behavior of brush copolymer with a polystyrene backbone and polyacrylate-amide side chains/nanographene-filled composites. J Mol Struct 1186:187–203

    CAS  Google Scholar 

  48. Gurgenc T, Production and characterization, of Ag-doped strontium apatite particles synthesized by hydrothermal method, in 6th International Conference on Materials Science and Nanotechnology for Next Generation. 2019: Niğde, TURKEY. p. 185

  49. Kıvanç M, Barutca B, Koparal AT, Göncü Y, Bostancı SH, Ay N (2018) Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Mater Sci Eng C 91:115–124

    Google Scholar 

  50. Jing L, Li H, Tay RY, Sun B, Tsang SH, Cometto O, Lin J, Teo EHT, Tok AIY (2017) Biocompatible hydroxylated boron nitride nanosheets/poly (vinyl alcohol) interpenetrating hydrogels with enhanced mechanical and thermal responses. ACS Nano 11(4):3742–3751

    CAS  PubMed  Google Scholar 

  51. Duan G, Wang Y, Yu J, Zhu J, Hu Z (2019) Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro-and nano-sized hexagonal boron nitride. Front Mater Sci 13(1):64–76

    Google Scholar 

  52. Nimmy E, Wilson P (2019) Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation. Ultrason Sonochem 50:188–199

    CAS  Google Scholar 

  53. Stanić V, Janaćković D, Dimitrijević S, Tanasković SB, Mitrić M, Pavlović MS, Krstić A, Jovanović D, Raičević S (2011) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci 257(9):4510–4518

    Google Scholar 

  54. Geng Z, Cui Z, Li Z, Zhu S, Liang Y, Liu Y, Li X, He X, Yu X, Wang R (2016) Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating. Mater Sci Eng C 58:467–477

    CAS  Google Scholar 

  55. Kavitha R, Ravichandran K, Narayanan TS (2018) Deposition of strontium phosphate coatings on magnesium by hydrothermal treatment: characteristics, corrosion resistance and bioactivity. J Alloys Compd 745:725–743

    CAS  Google Scholar 

  56. Nihmath A, Ramesan M (2017) Fabrication, characterization and dielectric studies of NBR/hydroxyapatite nanocomposites. J Inorg Organomet Polym Mater 27(2):481–489

    CAS  Google Scholar 

  57. Wang F, Zeng X, Yao Y, Sun R, Xu J, Wong C-P (2016) Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Sci Rep 6(1):1–9

    Google Scholar 

  58. Mishra MK, Moharana S, Behera B, Mahaling RN (2017) Surface functionalization of BiFeO 3: a pathway for the enhancement of dielectric and electrical properties of poly (methyl methacrylate)–BiFeO 3 composite films. Front Mater Sci 11(1):82–91

    Google Scholar 

  59. Roman-Lopez J, Correcher V, Garcia-Guinea J, Rivera T, Lozano I (2014) Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen. Spectrochim Acta A Mol Biomol Spectrosc 120:610–615

    CAS  PubMed  Google Scholar 

  60. Corcione CE, Frigione M (2012) Characterization of nanocomposites by thermal analysis. Materials 5(12):2960–2980

    CAS  PubMed Central  Google Scholar 

  61. Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22

    CAS  Google Scholar 

  62. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner RD, Adamson D, Schniepp H, Chen X, Ruoff R (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    CAS  PubMed  Google Scholar 

  63. Chattopadhyay D, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133

    CAS  Google Scholar 

  64. Jang I, Shin K-H, Yang I, Kim H, Kim J, Kim W-H, Jeon S-W, Kim J-P (2017) Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents. Colloids Surf A Physicochem Eng Asp 518:64–72

    CAS  Google Scholar 

  65. Unal M, Cingoz F, Bagcioglu C, Sozer Y, Akkus O (2018) Interrelationships between electrical, mechanical and hydration properties of cortical bone. J Mech Behav Biomed Mater 77:12–23

    PubMed  Google Scholar 

  66. Moni G, Jose T, Rajeevan S, Mayeen A, Rejimon A, Sarath P, George SC (2020) Influence of exfoliated graphite inclusion on the thermal, mechanical, dielectric and solvent transport characteristics of fluoroelastomer nanocomposites. J Polym Res 27(3):1–11

    Google Scholar 

  67. Dhatarwal P, Sengwa R (2019) Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26(8):196

    Google Scholar 

  68. Ramesh S, Liew C-W, Arof A (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357(21):3654–3660

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Biryan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurgenc, T., Biryan, F. Production, thermal and dielectrical properties of Ag-doped nano-strontium apatite and nano h-BN filled poly(4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate) composites. J Polym Res 27, 194 (2020). https://doi.org/10.1007/s10965-020-02166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02166-6

Keywords

Navigation