Skip to main content
Log in

Approximate energy spectra of improved generalized Mobius square potential (IGMSP) for some diatomic hydride molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

By employing the dissociation energy and equilibrium bond length as explicit parameters, we obtained the improved generalized Mobius square potential (IGMSP) model. We also defined the IGMSP parameters in terms of the molecular spectroscopic parameters. The IGMSP has been used to model inter-nuclear interaction potential curves for different diatomic hydrides. Furthermore, we have obtained the ro-vibrational energy spectra of the IGMSP model, both analytically and numerically for the selected diatomic hydrides. This was done by employing a Pekeris-type approximation scheme and an appropriate coordinate transformation to solve the Schrodinger equation. Our results have been compared with the experimental Rydberg-Klein-Rees (RKR) data points and the results of Morse potential. We calculated the mean absolute percentage deviation of IGMSP from the experimental RKR data points for the selected diatomic hydrides and that of Morse potential. The effects of the potential parameters, including the vibrational and rotational quantum numbers on the ro-vibrational energies for the different diatomic hydrides, have also been discussed. This study has shown to be highly relevant to the studies of thermodynamic and thermochemical functions of diatomic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jia CS, Diao YF, Liu XJ, Wang PQ, Liu JY, Zhang GD (2012) Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. J. Chem. Phys. 137:014101

    PubMed  Google Scholar 

  2. Zhang GD, Liu JY, Zhang LH, Zhou W, Jia CS (2012) Modified Rosen-Morse potential energy model for diatomic molecules. Phys. Rev. A 86:062510

    Google Scholar 

  3. Okorie US, Ikot AN, Onyeaju MC, Chukwuocha EO (2018) Bound state solutions of Schrodinger equation with modified Mobius square potential (MMSP) and its thermodynamic properties. J Mol Mod 24:289

    Google Scholar 

  4. Mustafa O (2015) A new deformed Schiöberg-type potential and ro-vibrational energies for some diatomic molecules. Phys Scri 90:065002

    Google Scholar 

  5. Wang PQ, Zhang LH, Jia CS, Liu JY (2012) Improved expressions for the Schiöberg potential energy models for diatomic molecules. J. Mol. Spectrosc. 278:23

    CAS  Google Scholar 

  6. Sun Y, He S, Jia CS (2013) Equivalence of the deformed modified Rosen-Morse potential energy model and the Tietz potential energy model. Phys Scri 87:02530

    Google Scholar 

  7. Zavitsas AA (1991) Energy-distance relationship in chemical bonding. Accurate calculation of potential energy curves. J. Am. Chem. Soc. 113:4755

    CAS  Google Scholar 

  8. Jia CS, Zhang LH, Wang CW (2017) Thermodynamic properties for the lithium dimer. Chem. Phys. Lett. 667:211

    CAS  Google Scholar 

  9. Jia CS, Dai JW, Zhang LH, Liu JY, Peng XL (2015) Relativistic energies for diatomic molecule nucleus motions with the spin symmetry. Phys. Lett. A 379:137

    CAS  Google Scholar 

  10. Sun Y, Zhang GD, Jia CS (2015) D-dimensional relativistic energies for silver dimer. Chem. Phys. Lett. 636:197

    CAS  Google Scholar 

  11. Roy AK (2014) Ro-vibrational studies of diatomic molecules in a shifted Deng–Fan oscillator potential. Int. J. Quantum Chem. 114:383

    CAS  Google Scholar 

  12. Ikot AN, Hassanabadi H, Obong HP, Umoren YE, Isonguyo CN, Yazarloo BH (2014) Approximate solutions of Klein-Gordon equation with improved Manning-Rosen potential in D-dimensions using SUSYQM. Chin Phys B 23:120303

    Google Scholar 

  13. Pena JJ, García-Martínez J, García-Ravelo J, Morales J (2015) Bound state solutions of D-dimensional Schrödinger equation with exponential-type potentials. Int. J. Quantum Chem. 115:158

    CAS  Google Scholar 

  14. Mustafa O (2015) On the ro–vibrational energies for the lithium dimer; maximum-possible rotational levels. J. Phys. B Atomic Mol. Phys. 48:065101

    Google Scholar 

  15. Ikot AN, Ibanga EJ, Hassanabadi H (2016) Scattering state of the multiparameter potential with an improved approximation for the centrifugal term in D-dimensions. Int. J. Quantum Chem. 116:81

    CAS  Google Scholar 

  16. Ovando G, Pena JJ, Morales J (2016) On the equivalence of radial potential models for diatomic molecules. Theor Chem Acct 135:62

  17. Yanar H, Aydogdu O, Salti M (2016) Modeling of diatomic molecules. Mol. Phys. 114:3134

    CAS  Google Scholar 

  18. Song XQ, Wang CW, Jia CS (2017) Themodynamic properties for the sodium dimer. Chem. Phys. Lett. 673:50

    CAS  Google Scholar 

  19. Jia CS, Wang CW, Zhang LH, Peng XL, Zeng R, You XT (2017) Partition function of improved Tietz oscillators. Chem. Phys. Lett. 676:150

    CAS  Google Scholar 

  20. Jia CS, Wang CW, Zhang LH, Peng XL, Tang HM, Liu JY, Xiong Y, Zeng R (2018) Predictions of entropy for diatomic molecules and gaseous substances. Chem. Phys. Lett. 692:57

    CAS  Google Scholar 

  21. Jia CS, Zeng R, Peng XL, Zhang LH, Zhao YL (2018) Entropy of gaseous phosphorus dimer. Chem. Eng. Sci. 190:1

    Google Scholar 

  22. Peng XL, Jiang R, Jia CS, Zhang LH, Zhao YL (2018) Gibbs free energy of gaseous phosphorus dimer. Chem. Eng. Sci. 190:122

    CAS  Google Scholar 

  23. Deng M, Jia CS (2018) Prediction of enthalpy for nitrogen gas. Eur Phys J Plus 133:258

    Google Scholar 

  24. Tas A, Aydogdu O, Salti M (2017) Dirac particles interacting with the improved Frost–Musulin potential within the effective mass formalism. Ann. Phys. 379:67

    CAS  Google Scholar 

  25. Ocak Z, Yanar H, Salti M, Aydogdu O (2018) Relativistic spinless energies and thermodynamic properties of sodium dimer molecule. Chem. Phys. 513:252

    CAS  Google Scholar 

  26. Fu KX, Wang M, Jia CS (2019) Improved five-parameter exponential-type potential energy model for diatomic molecules. Commun. Theor. Phys. 71:103

    CAS  Google Scholar 

  27. Jiang R, Jia CS, Wang YQ, Peng XL, Zhang LH (2019) Prediction of enthalpy for the gases Co, HCl and BF. Chem. Phys. Lett. 715:186

    CAS  Google Scholar 

  28. Jia CS, Zhang LH, Peng XL, Luo JX, Zhao YL, Liu JY, Guo JJ, Tang LD (2019) Prediction of entropy and Gibbs free energy for nitrogen. Chem. Eng. Sci. 202:70

    CAS  Google Scholar 

  29. Xie BJ, Jia CS (2019) Improved multiparameter exponential-type potential for diatomic molecules. Int J Quantum Chem:e26058–e26051

  30. Udoh ME, Okorie US, Ngwueke MI, Ituen EE, Ikot AN (2019) Rotation-vibrational energies for some diatomic molecules with improved Rosen–Morse potential in D-dimensions. J Mol Mod 25:170

    CAS  Google Scholar 

  31. Jia CS, Zhang LH, Peng XL (2017) Improved Poschl-Teller potential energy model for diatomic molecules. Int. J. Quantum Chem. 117:e25383

    Google Scholar 

  32. Ikot AN, Okorie US, Sever R, Rampho GJ (2019) Eigensolution, expectation values and thermodynamic properties of the screened-Kratzer potential. Eur Phys J Plus:134–386

  33. Hu HT, Liu JY, Jia CS (2013) The \( {3}^3{\varSigma}_g^{+} \) state of Cs2 molecule. Comput Theor Chem 1019:137

    CAS  Google Scholar 

  34. Liang GC, Tang HM, Jia CS (2013) Equivalence of the Sun and Tietz potential models for diatomic molecules. Comput Theor Chem 1020:170

    CAS  Google Scholar 

  35. Boonserm P, Visser M (2011) Quasi-normal frequencies: key analytic results. J High Energy Phys 03:73

    Google Scholar 

  36. Yazarloo BH, Hassanabadi H, Zarrinkamar S (2012) Oscillator strengths based on the Mobius square potential under Schrodinger equation. Eur Phys J Plus 127:51

    Google Scholar 

  37. Ikot AN, Yazarloo BH, Zarrinkamar S, Hassanabadi H (2014) Symmetry limits of (D+1)-dimensional Dirac equation with Mobius square potential. Eur Phys J Plus 129:79

    Google Scholar 

  38. Varshni YP (1957) Comparative study of potential energy functions for diatomic molecules. Rev. Mod. Phys. 29:664

    CAS  Google Scholar 

  39. Pekeris CL (1934) The rotation-vibration coupling in diatomic molecules. Phys. Rev. 45:98

    CAS  Google Scholar 

  40. Tang HM, Liang GC, Zhang LH, Zhao F, Jia CS (2014) Molecular energies of the improved Tietz potential energy model. J Mol Mod 92:201

    CAS  Google Scholar 

  41. Kunc JA, Gordillo-Vazquez FJ (1997) Rotational-vibrational levels of diatomic molecules represented by the Tietz-Hua rotating oscillator. J. Phys. Chem. A 101:1595

    CAS  Google Scholar 

  42. Grochola A, Jastrzebski W, Kowalczyk P (2008) Spectroscopic study of the 61Πu state in Li2. Mol. Phys. 106:1375

    CAS  Google Scholar 

  43. Muschenborn HJ (1996) The potential of the Ag2B − 11Πu state. J Mol Spectr 179:1

    CAS  Google Scholar 

  44. Li D, Xie F, Li L (2008) Observation of the \( C{s}_2\kern0.24em {3}^3{\varSigma}_g^{+} \) state by infrared-infrared double resonance. Chem. Phys. Lett. 458:267

    CAS  Google Scholar 

  45. Rafi M, Al-Tuwirqi R, Farhan H, Khan IA (2007) A new four-parameter empirical potential energy function for diatomic molecules. Pram-J Phys 68:959

    CAS  Google Scholar 

  46. Hajigeorgiou PG (2010) An extended Lennard-Jones potential energy function for diatomic molecules: application to ground electronic states. J Mol Spect 263:101

    CAS  Google Scholar 

  47. Stwalley WC, Zemke WT, Yang SC (1991) Spectroscopy and structure of the alkali hydride diatomic molecules and their ions. J Phys Chem, Reference Data 20:153

    CAS  Google Scholar 

  48. Ocak Z, Yanar H, Salti M, Aydogu O (2018) Relativistic spinless energies and thermodynamic properties of sodium dimer molecules. Chem. Phys. 513:252

    CAS  Google Scholar 

  49. Latroche M (2004) Structural and thermodynamic properties of metallic hydrides used for energy storage. J. Phys. Chem. Solids 65:517

    CAS  Google Scholar 

  50. Abdessameud S, Mezbahul-Islam M, Medraj M (2014) Thermodynamic modelling of hydrogen storage capacity in Mg-Na alloys. Scient World J 190320:1

    Google Scholar 

  51. Gulebaglan SE, Dogan EK, Secuk MN, Aycibin M, Erdinc B, Akkus H (2015) First-principles study on electronic, optic, elastic, dynamic and thermodynamic properties of RbH compound. Int J Simul Multisci Des Optim 6:A6

    Google Scholar 

Download references

Acknowledgements

We sincerely thank our reviewers for the contributions made to our manuscript through their thorough review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uduakobong S. Okorie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okorie, U.S., Ikot, A.N. & Chukwuocha, E.O. Approximate energy spectra of improved generalized Mobius square potential (IGMSP) for some diatomic hydride molecules. J Mol Model 26, 195 (2020). https://doi.org/10.1007/s00894-020-04449-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04449-7

Keywords

Navigation