Skip to main content
Log in

Hierarchical NiOCeO nanosheets self-assembly flower-like architecture: heterojunction engineering assisting for high-performance humidity sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to its high performance, good sensitivity, fast response and recovery time, p-n heterojunction layer-like nanostructure consisting of two kinds of semiconducting metal oxide materials can be regarded as one of the most promising sensor materials for humidity detection at room temperature. In this study, NiO–CeO p-n heterojunction-based 2D nanosheet self-assembled architectures have been developed for constructing high-performance humidity sensors. Morphology and structure characterizations reveal that the novel heterostructures are composed of 3D flower-like porous microspheres self-assembled by 2D layered nanosheets with high surface area and abundant active sites, in which the amorphous n-type CeO nanocrystalline with only several nanometers homogeneously distributes into the p-type NiO nanosheet matrix. The sensors presented excellent humidity sensing performance with high sensitivity and a pseudo-linear response to water gas in the relative wide humidity (RH) range of 11–95% at room temperature with excellent stability, reproducibility and fast response speed. These improved properties can be greatly attributed to the unique 3D flower-like architectures with a large specific surface area and the NiO–CeO heterojunction interface and synergistic effect. Such a high performances of NiO–CeO p-n heterojunction humidity sensor can have great potential applications in highly sensitive humidity sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Song, Q. Qi, T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B 138, 368–373 (2009)

    CAS  Google Scholar 

  2. X. Wang, B. Ding, J. Yu, M. Wang, F. Pan, A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 21, 055502 (2010)

    Google Scholar 

  3. C.R. Zamarreño, M. Hernaez, I. Del Villar, I.R. Matias, F.J. Arregui, Tunable humidity sensor based on ITO-coated optical fiber. Sens. Actuators B 146, 414–417 (2010)

    Google Scholar 

  4. X. Xiao, Q.-J. Zhang, J.-H. He, Q.-F. Xu, H. Li, N.-J. Li, D.-Y. Chen, J.-M. Lu, Polysquaraines: novel humidity sensor materials with ultra-high sensitivity and good reversibility. Sens. Actuators B 255, 1147–1152 (2018)

    CAS  Google Scholar 

  5. M. Parthibavarman, V. Hariharan, C. Sekar, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. C 31, 840–844 (2011)

    CAS  Google Scholar 

  6. H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li, T. Wang, High-temperature humidity sensors based on WO3–SnO2 composite hollow nanospheres. J. Mater. Chem. A 2, 6854–6862 (2014)

    CAS  Google Scholar 

  7. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005)

    CAS  Google Scholar 

  8. Y. Qiu, S. Yang, ZnO Nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Funct. Mater. 17, 1345–1352 (2007)

    CAS  Google Scholar 

  9. K. Wang, X. Qian, L. Zhang, Y. Li, H. Liu, Inorganic-organic p-n heterojunction nanotree arrays for a high-sensitivity diode humidity sensor. ACS Appl. Mater. Interface 5, 5825–5831 (2013)

    CAS  Google Scholar 

  10. Y. Zhang, W. Fu, H. Yang, Q. Qi, Y. Zeng, T. Zhang, R. Ge, G. Zou, Synthesis and characterization of TiO2 nanotubes for humidity sensing. Appl. Surf. Sci. 254, 5545–5547 (2008)

    CAS  Google Scholar 

  11. Q. Wang, Y.Z. Pan, S.S. Huang, S.T. Ren, P. Li, J.J. Li, Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor. Nanotechnology 22, 025501 (2011)

    CAS  Google Scholar 

  12. D. Das, M. Pal, E. Di Bartolomeo, E. Traversa, D. Chakravorty, Synthesis of nanocrystalline nickel oxide by controlled oxidation of nickel nanoparticles and their humidity sensing properties. J. Appl. Phys. 88, 6856–6860 (2000)

    CAS  Google Scholar 

  13. S. Makhlouf, Humidity sensing properties of NiO/Al2O3 nanocomposite materials. Solid State Ionics 164, 97–106 (2003)

    CAS  Google Scholar 

  14. H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, T.Y. Tsai, W.Y. Weng, C.L. Hsu, B.T. Dai, CuO nanowire-based humidity sensors prepared on glass substrate. Sens. Actuators B 156, 906–911 (2011)

    CAS  Google Scholar 

  15. X. Ding, D. Zeng, S. Zhang, C. Xie, C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature. Sens. Actuators B 155, 86–92 (2011)

    CAS  Google Scholar 

  16. Y. Liu, H. Huang, L. Wang, B. Liu, D. Cai, D. Wang, C. Wang, H. Li, Y. Wang, W. Xie, Q. Li, T. Wang, Enhanced sensitivity of a GHz surface acoustic wave humidity sensor based on Ni(SO4)0.3(OH)1.4 nanobelts and NiO nanoparticles. J. Mater. Chem. C 3, 9902–9909 (2015)

    CAS  Google Scholar 

  17. D. Zhang, Y. Sun, P. Li, Y. Zhang, Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interface 8, 14142–14149 (2016)

    CAS  Google Scholar 

  18. W.D. Lin, C.T. Liao, T.C. Chang, S.H. Chen, R.J. Wu, Humidity sensing properties of novel graphene/TiO2 composites by sol–gel process. Sens. Actuators B 209, 555–561 (2015)

    CAS  Google Scholar 

  19. P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. Engl. 51, 11053–11057 (2012)

    CAS  Google Scholar 

  20. C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, G. Lu, Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuators B 220, 59–67 (2015)

    CAS  Google Scholar 

  21. H. Yang, Q. Tao, X. Zhang, A. Tang, J. Ouyang, Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. J. Alloy. Compd. 459, 98–102 (2008)

    CAS  Google Scholar 

  22. J. Wang, L. Wei, L. Zhang, C. Jiang, E. Siu-Wai Kong, Y. Zhang, Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity. J. Mater. Chem. 22, 8327 (2012)

    CAS  Google Scholar 

  23. P. Pascariu, A. Airinei, N. Olaru, I. Petrila, V. Nica, L. Sacarescu, F. Tudorache, Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens. Actuators B 222, 1024–1031 (2016)

    CAS  Google Scholar 

  24. D. Ju, H. Xu, Q. Xu, H. Gong, Z. Qiu, J. Guo, J. Zhang, B. Cao, High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens. Actuators B 215, 39–44 (2015)

    CAS  Google Scholar 

  25. L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong, H. Song, NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg. Chem. 51, 7733–7740 (2012)

    CAS  Google Scholar 

  26. X. Yue, T. Hong, Z. Yang, S. Huang, Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO-In2O3 composite nanofibers. Chin. Sci. Bull. 58, 821–826 (2012)

    Google Scholar 

  27. C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical alpha-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interface 6, 12031–12037 (2014)

    CAS  Google Scholar 

  28. H.R. Kim, A. Haensch, I.D. Kim, N. Barsan, U. Weimar, J.H. Lee, The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 21, 4456–4463 (2011)

    CAS  Google Scholar 

  29. R.M. Mohamed, E.S. Aazam, Photocatalytic oxidation of carbon monoxide over nanocomposites under UV irradiation. J. Nanotech. 2012, 1–9 (2012)

    Google Scholar 

  30. D. Li, Y. Li, F. Li, J. Zhang, X. Zhu, S. Wen, S. Ruan, Humidity sensing properties of MoO3-NiO nanocomposite materials. Ceram. Int. 41, 4348–4353 (2015)

    CAS  Google Scholar 

  31. Y. Farooq, S. Fareed, M.A. Rafiq, F. Sher, Nickel manganese oxide nanoparticles based humidity sensors. J. Electron. Mater. 48, 2289–2293 (2019)

    CAS  Google Scholar 

  32. Y. Zhang, M. Yuan, B. Jiang, P. Li, X. Zheng, Effect of mesoporous structure on Bi3.25La0.75Ti3O12 powder for humidity sensing properties. Sens. Actuators B 229, 453–460 (2016)

    CAS  Google Scholar 

  33. S. Pokhrel, K.S. Nagaraja, Electrical and humidity sensing properties of Chromium(III) oxide–tungsten(VI) oxide composites. Sens. Actuators B 92, 144–150 (2003)

    CAS  Google Scholar 

  34. Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 137, 649–655 (2009)

    CAS  Google Scholar 

  35. D. Zhang, J. Liu, B. Xia, Layer-by-layer self-assembly of zinc oxide/graphene oxide hybrid toward ultrasensitive humidity sensing. IEEE Electron Device Lett. 37, 916–919 (2016)

    CAS  Google Scholar 

  36. Su Pi-Guey, L.-N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sens. Actuators B 123, 501–507 (2007)

    Google Scholar 

  37. Z. Wang, X. Fan, C. Li, G. Men, D. Han, F. Gu, Humidity-sensing performance of 3DOM WO3 with controllable structural modification. ACS Appl. Mater. Interface 10, 3776–3783 (2018)

    CAS  Google Scholar 

  38. P. Singh, C.S. Kushwaha, S.K. Shukla et al., Synthesis and humidity sensing property of α-Fe2O3 and polyaniline composite. Mater. Today 5, 9118–9125 (2018)

    CAS  Google Scholar 

  39. S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn, J.E. Lee, D.H. Kim, Y.-S. Shim, K.C. Kwon, K.S. Choi, H.J. Yoo, J.M. Suh, M. Ko, J.-H. Lee, M.J. Lee, S.Y. Kim, M.H. Lee, H.W. Jang, Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018)

    CAS  Google Scholar 

  40. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014)

    Google Scholar 

  41. Z. Wang, Y. Lu, S. Yuan, L. Shi, Y. Zhao, M. Zhang, W. Deng, Hydrothermal synthesis and humidity sensing properties of size-controlled Zirconium Oxide (ZrO2) nanorods. J. Colloid. Interface. Sci. 396, 9–15 (2013)

    CAS  Google Scholar 

  42. T. Fei, K. Jiang, S. Liu, T. Zhang, Humidity sensors based on Li-loaded nanoporous polymers. Sens. Actuators B 190, 523–528 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge financial support from National Natural Science Foundation of China (NSFC Grant No. 11875032), the Nature Science Foundation of Jilin Province (20170101193JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guodong Wei or Wen Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Y., Wang, P. et al. Hierarchical NiOCeO nanosheets self-assembly flower-like architecture: heterojunction engineering assisting for high-performance humidity sensor. J Mater Sci: Mater Electron 31, 13229–13239 (2020). https://doi.org/10.1007/s10854-020-03874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03874-x

Navigation