Skip to main content
Log in

Development of chemically synthesized lead-free double perovskite compound: BiBaFeCeO6

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this communication, preliminary structural and detailed electrical (impedance, and conductivity) along with multiferroic (ferroelectric and ferromagnetisc) characteristics of a cost effective chemically processed double perovskite compound, BiBaFeCeO6, have been reported. By analyzing the X-ray diffraction data, the orthorhombic crystal structure of the compound with a single-phase characteristic is obtained. Combining the two simple perovskite materials, BiFeO3 with BaCeO3, in equal ratio produces a new double perovskite compound BibaFeCeO6 with the enhanced dielectric constant (as compared to that of individual perovskite). The shift in the dielectric peak and increase of peak broadening with increase in frequency suggest the existence of relaxation process and relaxor characterizes in the studied compound. The variation of the characteristic of dc conductivity with temperature displays the presence of semiconductor (negative temperature coefficient of resistance) behavior in the compound. Analysis of frequency dependence of ac conductivity data shows that the studied compound obeys the Jonscher’s universal power law. The analysis of complex impedance and modulus spectroscopy data exhibits the non-Debye type of relaxation mechanisms in the compound. The multiferroicity in the compound has been confirmed from the P–E, M–H hysteresis loop and M–E coupling characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Purohit, R.N.P. Choudhary, M. Sahu, Structural and electrical properties of lead-free perovskite: Bi(Sr0.25Ti0.25Fe0.5)O3. J. Inorganic Organometallic Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01459-z

    Article  Google Scholar 

  2. E. Ringgaard, T. Wurlitzer, ‘Lead Free Piezoceramics Based on Alkali Nioates’. J. Eur. Ceram. Soc. 25, 2701–2706 (2005)

    Article  CAS  Google Scholar 

  3. A. Tripathy, S.N. Das, S. Bhuyan, R.N.P. Choudhary, Structural and dielectric properties of double perovskite lead free BiGdMnNiO6 electronic system. Mater. Today (2010). https://doi.org/10.1016/j.matpr.2020.03.274

    Article  Google Scholar 

  4. T. Takenaka, H. Nagata, Y. Hirima, Y. Yoshii, K. Matumoto, C.Y. Fang, C.A. Randal, M.T. Lanagan, D.K. Agrawal, Microwave processing of electroceramic materials and devices. J. Electroceram. 22, 125 (2009)

    Article  Google Scholar 

  5. X. Zhu, Q. Hang, Z. Xing, Y. Yang, J. Zhu, Z. Liu, Z. Zou, Microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic activities of single-crystalline bismuth ferric nanocrystals. J. Am. Ceram. Soc. 94, 2688 (2011)

    Article  CAS  Google Scholar 

  6. F. Jin, J. Liu, B. Niu, L. Ta, R. Li, Y. Wang, X. Yang, T. He, Evaluation and performance optimization of double-perovskite LaSrCoTiO5+δ cathode for intermediate-temperature solid-oxide fuel cells. Int. J. Hydrog. Energy 41, 21439–21449 (2016)

    Article  CAS  Google Scholar 

  7. S. Hajra, M. Sahu, V. Purohit, R.N. Choudhary, Dielectric, conductivity and ferroelectric properties of lead-free electronic ceramic: 0.6Bi (Fe0.98Ga0.02) O3-0.4 BaTiO3. Heliyon 5(5), 1654 (2019)

    Article  Google Scholar 

  8. E.W. Powd, An interactive Powder diffraction data interpretation and indexing Program, Ver. 2.1 (School of Physical Science, Finders University of South Australia, Bedford Park, 1989)

    Google Scholar 

  9. A. Manohar, C. Krishnamoorthi, Synthesis and magnetic hyperthermia studies on high susceptible Fe1−xMgxFe2O4 superparamagnetic nanospheres. J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.07.065

    Article  Google Scholar 

  10. A. Manohar, C. Krishnamoorthi, Site selective Cu2+ substitution in single crystal Fe3O4 biocompatible nanospheres by solvothermal reflux method. J. Cryst. Growth (2017). https://doi.org/10.1016/j.jcrysgro.2017.05.013

    Article  Google Scholar 

  11. A. Manohar, C. Krishnamoorthi, Structural, Raman, magnetic and other properties of cosubstituted ZnFe2O4 nanocrystals synthesized by solvothermal reflux method. J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-7967-2

    Article  Google Scholar 

  12. K. Parida, S.K. Dehury, R.N.P. Choudhary, Electrical, optical and magneto-electric characteristics of BiBaFeCeO6 electronic system. Mater. Sci. Eng. B 225, 173–181 (2017)

    Article  CAS  Google Scholar 

  13. K. Pradhan, R.N.P. Choudhary, Dielectric and thermal properties of LaAsO4. J. Mater. Sci. 22, 2955 (1987)

    Article  CAS  Google Scholar 

  14. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  15. A. Manohar, C. Krishnamoorthi, K. Chandra Babu Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A 125, 477 (2019)

    Article  CAS  Google Scholar 

  16. N. Panda, S. Pattanayak, R.N.P. Choudhary, Structural and electrical properties of BiFeO3–PbTiO3 system. J Mater Sci (2015). https://doi.org/10.1007/s10854-015-2946-y

    Article  Google Scholar 

  17. N.V. Volkov, E.V. Eremin, K.A. Sablina, N.V. Sapronova, Dielectric properties of a mixed-valence Pb3Mn7O15 manganese oxide. J. Phys. 22, 375901 (2010)

    CAS  Google Scholar 

  18. K. Kumar, A. Loganathan, The structural, electrical and magnetic properties of Co2+ content dependent Mg-Sr nanoferrite for electromagnetic induction. Mater. Sci. Eng. B 224, 48–55 (2017)

    Article  CAS  Google Scholar 

  19. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Complex impedance studies of sodium pyrotungstate—Na2W2O7. Phys. Stat. Sol. 201, 588 (2004)

    Article  CAS  Google Scholar 

  20. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  21. P. Gangualy, A.K. Jha, K.L. Deori, Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Solid State Commun. 146, 472–477 (2008)

    Article  Google Scholar 

  22. V. Purohit, R. Padhee, R.N.P. Choudhary, Dielectric and impedance spectroscopy of Bi(Ca0.5Ti0.5)3 ceramic. Ceram. Int. 44, 3993–3999 (2017)

    Article  Google Scholar 

  23. T. Chakraborty, R. Yadav, S. Elizabeth, H.L. Bhat, Evolution of Jahn–Teller distortion, transport and dielectric properties with doping in perovskite NdFe1−xMnxO3 (0 ≤ x ≤ 1) compounds. Phys. Chem. Chem. Phys. 18, 5316 (2016)

    Article  CAS  Google Scholar 

  24. M.A. Gabal, Y.M. Al Angari, A.Y. Obaid, Structural characterization and activation energy of NiTiO3 nanopowders prepared by the co-precipitation and impregnation with calcinations. ComptesRendusChimie 16, 704 (2013)

    CAS  Google Scholar 

  25. A. Belboukhari, E. Choukri, Y. Gagou, R. Elmoznine, N. Abdelmoula, A. Neqali, M. El Marssi, H. Khemakhem, D. Mezzane, Investigation on relaxation and conduction mechanism in Pb0.75K0.5Nb2O6 new ferroelectric ceramic. Superlattices Microstruct. 71, 7 (2014)

    Article  CAS  Google Scholar 

  26. K. Parida, S.K. Dehury, Choudhary RNP (2016) Structural, electrical and magneto-electric characteristics of BiMgFeCeO6 ceramics. Phys. Lett. A 380, 4083 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Satyabati Das, IIT, Bhubaneswar, Odisha and Dr. Perumal Alagarsamy, Professsor in Physics, IIT Guwahati, Assam, India for their kind help in some experiments and analysis work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Parida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, K., Choudhary, R.N.P. Development of chemically synthesized lead-free double perovskite compound: BiBaFeCeO6. J Mater Sci: Mater Electron 31, 13292–13300 (2020). https://doi.org/10.1007/s10854-020-03882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03882-x

Navigation