Skip to main content
Log in

Micro-characteristic of Strengthened Al0.1CoCrFeNi Alloy from Aluminum-Addition Friction Stir Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

1060 Al and Al0.1CoCrFeNi are friction stir lap welded in this study in order to improve the microstructure and mechanical property of the high-entropy alloy by adding Al element into the alloy through friction stir processing. The results indicate that a crescent-shaped aluminum-addition zone featured by limited upward material flow is formed in the high-entropy alloy. The aluminum-addition friction stir processing leads to the formation of fine and homogeneously distributed microstructures and the occurrence of body-centered cubic phases in the high-entropy alloy. Owing to the synthetical strengthening effects caused by friction stir modification and Al content increase, the hardness of the Al0.1CoCrFeNi alloy is increased significantly from 100 Hv to an average value over 400 Hv and a maximum value of 600 Hv. The present study is able to provide an effective approach for the preparation and strengthening of high-entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93

    Article  Google Scholar 

  2. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511

    Article  CAS  Google Scholar 

  3. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, and Y. Wang, Effects of Al Addition on Microstructure and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2015, 648, p 15–22

    Article  CAS  Google Scholar 

  4. H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Microstructure, Thermophysical and Electrical Properties in AlxCoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys, Mater. Sci. Eng. B, 2009, 163, p 184–189

    Article  CAS  Google Scholar 

  5. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26, p 44–51

    Article  Google Scholar 

  6. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish Diffusion in Co-Cr-Fe-Mn-Ni High-Entropy Alloys, Acta Mater., 2013, 61, p 4887–4897

    Article  CAS  Google Scholar 

  7. C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5CoCrCuFeNi, J. Alloy. Compd., 2009, 486, p 427–435

    Article  CAS  Google Scholar 

  8. H.Y. Guan, Y.P. Zhang, Y.H. Fan, and X.N. Li, Microstructure and Properties of Sintered AlNiCrFeCuMox Alloys, Rare Met. Mater. Eng., 2012, 41, p 532–535

    Google Scholar 

  9. J.H. Pi, C.F. Yu, C. Sun, H.L. Du, Y.L. Fan, B.S. Zhang, and S.F. Yang, Effect of Cold Deformation and Heat Treatment on the Microstructure and Mechanical Behavior of High Entropy Alloy CuCrFeNi2Al0.5, J. Mater. Eng. Perform., 2019, 28, p 586–592

    Article  CAS  Google Scholar 

  10. M. Li, Q. Zhang, B. Han, L. Song, J. Li, and J. Yang, Investigation on Microstructure and Properties of AlxCoCrFeMnNi High Entropy Alloys by Ultrasonic Impact Treatment, J. Alloy. Compd., 2020, 816, p 152626

    Article  CAS  Google Scholar 

  11. F. Meng and I. Baker, Nitriding of a High Entropy FeNiMnAlCr Alloy, J. Alloy. Compd., 2015, 645, p 376–381

    Article  CAS  Google Scholar 

  12. J. Li, M. Su, W. Qi, C. Wang, P. Zhao, F. Ni, and K. Liu, Mechanical Property and Characterization of 7A04-T6 Aluminum Alloys Bonded by Friction Stir Welding, J. Manuf. Process., 2020, 52, p 263–269

    Article  Google Scholar 

  13. N. Kumar, M. Komarasamy, and R.S. Mishra, Plastic Deformation Behavior of Ultrafine-Grained Al-Mg-Sc Alloy, J. Mater. Sci., 2014, 49, p 4202–4214

    Article  CAS  Google Scholar 

  14. B. He, L. Cui, D. Wang, Y. Liu, C. Liu, and H. Li, The Metallurgical Bonding and High Temperature Tensile Behaviors of 9Cr-1W Steel and 316L Steel Dissimilar Joint by Friction Stir Welding, J. Manuf. Process., 2019, 44, p 241–251

    Article  Google Scholar 

  15. S.S. Nene, K. Liu, M. Frank, R.S. Mishra, R.E. Brennan, K.C. Cho, Z. Li, and D. Raabe, Enhanced Strength and Ductility in a Friction Stir Processing Engineered Dual Phase High Entropy Alloy, Sci. Rep., 2017, 7, p 16167

    Article  CAS  Google Scholar 

  16. M.G. Jo, H.J. Kim, M. Kang, P.P. Madakashira, E.S. Park, J.Y. Suh, D.I. Kim, S.T. Hong, and H.N. Han, Microstructure and Mechanical Properties of Friction Stir Welded and Laser Welded High Entropy Alloy CrMnFeCoNi, Met. Mater. Int., 2018, 24, p 73–83

    Article  CAS  Google Scholar 

  17. Z.G. Zhu, Y.F. Sun, M.H. Goh, F.L. Ng, Q.B. Nguyen, H. Fujii, S.M.L. Nai, J. Wei, and C.H. Shek, Friction Stir Welding of a CoCrFeNiAl0.3 High Entropy Alloy, Mater. Lett., 2017, 205, p 142–144

    Article  CAS  Google Scholar 

  18. T. Wang, S. Shukla, M. Komarasamy, K. Liu, and R.S. Mishra, Towards Heterogeneous AlxCoCrFeNi High Entropy Alloy Via Friction Stir Processing, Mater. Lett., 2019, 236, p 472–475

    Article  CAS  Google Scholar 

  19. L. Zhou, M. Yu, H. Zhao, Z. Jiang, F. Guo, and X. Song, Dissimilar Friction Stir Welding of AA6061 and Ti6Al4V Alloys: A Study on Microstructure and Mechanical Properties, J. Manuf. Process., 2019, 48, p 119–126

    Article  Google Scholar 

  20. Y. Song, X. Yang, L. Cui, X.P. Hou, Z.K. Shen, and Y. Xu, Defect Features and Mechanical Properties of Friction Stir Lap Welded Dissimilar AA2024–AA7075 Aluminum Alloy Sheets, Mater. Des., 2014, 55, p 9–18

    Article  CAS  Google Scholar 

  21. Y. Huang, L. Wan, X. Meng, Y. Xie, Z. Lv, and L. Zhou, Probe Shape Design for Eliminating the Defects of Friction Stir Lap Welded Dissimilar Materials, J. Manuf. Process., 2018, 35, p 420–427

    Article  Google Scholar 

  22. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao, Guidelines in Predicting Phase Formation of High-Entropy Alloys, MRS Commun., 2014, 4, p 57–62

    Article  CAS  Google Scholar 

  23. D. Shaysultanov, N. Stepanov, S. Malopheyev, I. Vysotskiy, V. Sanin, S. Mironov, R. Kaibyshev, G. Salishchev, and S. Zherebtsov, Friction Stir Welding of a Carbon-Doped CoCrFeNiMn High-Entropy Alloy, Mater. Charact., 2018, 145, p 353–361

    Article  CAS  Google Scholar 

  24. N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, and R.S. Mishra, Friction Stir Processing of a High Entropy Alloy Al0.1CoCrFeNi, JOM, 2015, 67, p 1007–1013

    Article  CAS  Google Scholar 

  25. H.Y. Yu, W. Fang, R.B. Chang, P.G. Ji, and Q.Z. Wang, Modifying Element Diffusion Pathway by Transition Layer Structure in High-Entropy Alloy Particle Reinforced Cu Matrix Composites, Trans. Nonferr. Met. Soc., 2019, 29, p 2331–2339

    Article  CAS  Google Scholar 

  26. Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, and C.O. Pettersson, Microstructure and Mechanical Properties of Friction Stir Welded SAF 2507 Super Duplex Stainless Steel, Mater. Sci. Eng. A, 2005, 397, p 376–384

    Article  Google Scholar 

  27. X. Niu, J. Julius, D. Zhou, G. Yang, and Y. Yu, Microstructure and Corrosion Properties of AlxFeCoCrNiCu (x = 0.25, 0.5, 1.0) Thin Coatings on Steel Substrates Deposited by Electron Beam Evaporation, Rare Met. Mater. Eng., 2017, 46, p 3621–3625

    Article  Google Scholar 

  28. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10, p 534–538

    Article  CAS  Google Scholar 

  29. B.Y. Li, K. Peng, A.P. Hu, L.P. Zhou, J.J. Zhu, and D.Y. Li, Structure and Properties of FeCoNiCrCu0.5Alx, High-Entropy Alloy, Trans. Nonferr. Met. Soc., 2013, 23, p 735–741

    Article  CAS  Google Scholar 

  30. I. Toda-Caraballo and P.E.J. Rivera-Diaz-del-Castillo, A Criterion for the Formation of High Entropy Alloys Based on Lattice Distortion, Intermetallics, 2016, 71, p 76–87

    Article  CAS  Google Scholar 

  31. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to be supported by Program for the Top Young Talents of Higher Learning Institutions of Hebei (No. BJ2019201), Fundamental Research Funds for the Central Universities (No. N2023028), State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology (No. AWJ-19M04) and Program of Innovation and Entrepreneurship of Northeastern University at Qinhuangdao (No. CX20619).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-jie Zhang or Hui-jie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hj., Ji, Zj., Liu, Hj. et al. Micro-characteristic of Strengthened Al0.1CoCrFeNi Alloy from Aluminum-Addition Friction Stir Processing. J. of Materi Eng and Perform 29, 4206–4211 (2020). https://doi.org/10.1007/s11665-020-04931-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04931-6

Keywords

Navigation