Skip to main content

Advertisement

Log in

Copper-loaded SBA-15 Silica with Improved Electron Mobility-Conductance and Capacitance Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The effects of copper nanoparticles (CuNP) dispersion on the optical and electrical properties of mesoporous SBA-15 like silica were investigated. Full characterization of the resulting SBA-15-Cu through X-ray diffraction (XRD), thermogravimetry analysis (TGA), scanning electron microscopy (SEM), energy dispersion X-ray fluorescence (ED-XRF), diffuse reflectance (DRS) and Fourier Transform Infrared spectroscopy (FT-IR) revealed marked changes in the structure properties after copper incorporation. Slight decrease in the optical band gap energy in the SBA-15-Cu was also noticed. The shifts towards higher wavelengths are attributed to change in the acceptor capacity level induced by iron nanoparticles. Measurements of Z' and Z" in temperature showed an improvement in proton mobility of SBA-15-Cu. Deeper insights in the capacitance and conductance by impedance spectroscopy measurements over a wide range of frequencies at various temperatures suggest that CuNPs interaction with SBA-15 surface and silanol deprotonation can be, at least partly, responsible for conductance improvement. The above properties make these materials to be regarded as efficient materials for potential applications in electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.L. Freund, M. Spiro, Colloidal catalysis: the effect of sol size and concentration. The Journal of Physical Chemistry 89(7), 1074–1077 (1985)

    CAS  Google Scholar 

  2. E. Grabowska et al., Modification of titanium (IV) dioxide with small silver nanoparticles: application in photocatalysis. The Journal of Physical Chemistry C 117(4), 1955–1962 (2013)

    CAS  Google Scholar 

  3. M.N. Morshed et al., Titania-loaded cellulose-based functional hybrid nanomaterial for photocatalytic degradation of toxic aromatic dye in water. Journal of Water Process Engineering 33, 101062 (2020)

    Google Scholar 

  4. C.L. Haynes, R.P. Van Duyne, Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography. Nano Lett. 3(7), 939–943 (2003)

    CAS  Google Scholar 

  5. A.J. Haes et al., A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108(1), 109–116 (2004)

    CAS  Google Scholar 

  6. V.P. Zharov et al., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90(2), 619–627 (2006)

    CAS  PubMed  Google Scholar 

  7. T. Textor, M.M.G. Fouda, B. Mahltig, Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction. Appl. Surf. Sci. 256(8), 2337–2342 (2010)

    CAS  Google Scholar 

  8. B. Nabil et al., Development of new multifunctional filter based nonwovens for organics pollutants reduction and detoxification: High catalytic and antibacterial activities. Chem. Eng. J. 356, 702–716 (2019)

    Google Scholar 

  9. J. Vieillard et al., CuO nanosheets modified with amine and thiol grafting for high catalytic and antibacterial activities. Ind. Eng. Chem. Res. 58(24), 10179–10189 (2019)

    CAS  Google Scholar 

  10. A.V. Arus et al., Cu0and Pd0loaded Organo-Bentonites as Sponge-like Matrices for Hydrogen Reversible Capture at Ambient Conditions. ChemistrySelect 1(7), 1452–1461 (2016)

    CAS  Google Scholar 

  11. A. Azzouz et al., Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage. Chemsuschem 8(5), 800–803 (2015)

    CAS  PubMed  Google Scholar 

  12. N. Bouazizi et al., Metal-loaded polyol-montmorillonite with improved affinity towards hydrogen. J. Energy Inst. 91(1), 110–119 (2018)

    CAS  Google Scholar 

  13. N. Bouazizi et al., Synthesis and properties of ZnO-HMD@ZnO-Fe/Cu core-shell as advanced material for hydrogen storage. J Colloid Interface Sci 491, 89–97 (2017)

    CAS  PubMed  Google Scholar 

  14. N. Bouazizi et al., Cu0-loaded SBA-15@ZnO with improved electrical properties and affinity towards hydrogen. Appl. Surf. Sci. 404, 146–153 (2017)

    CAS  Google Scholar 

  15. N. Bouazizi et al., Copper and palladium loaded polyol dendrimer–montmorillonite composites as potential adsorbents for CO2 and H2. J. Mater. Sci.: Mater. Electron. 30(9), 8182–8190 (2019)

    CAS  Google Scholar 

  16. N. Bouazizi et al., Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. J. Phys. Chem. Solids 77, 172–177 (2015)

    CAS  Google Scholar 

  17. R. Sennour et al., Cu0-Loaded organo-montmorillonite with improved affinity towards hydrogen: an insight into matrix-metal and non-contact hydrogen-metal interactions. Physical Chemistry Chemical Physics 19(43), 29333–29343 (2017)

    CAS  PubMed  Google Scholar 

  18. M.N. Tahir et al., Metal organoclays with compacted structure for truly physical capture of hydrogen. Appl. Surf. Sci. 398, 116–124 (2017)

    CAS  Google Scholar 

  19. R. Ouargli-Saker et al., Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen. Appl. Surf. Sci. 411, 476–486 (2017)

    CAS  Google Scholar 

  20. M. Aghaei, A.H. Kianfar, M. Dinari, Green synthesis of nanostructure Schiff base complex based on aromatic polyamide and manganese (III) for elimination of Hg (II) and Cd (II) from solutions. J. Iran. Chem. Soc. 16(11), 2489–2500 (2019)

    CAS  Google Scholar 

  21. S. Kühl et al., Cu-Based Catalyst Resulting from a Cu, Zn, Al Hydrotalcite-Like Compound: A Microstructural, Thermoanalytical, and InSitu XAS Study. Chemistry A European Journal 20(13), 3782–3792 (2014)

    Google Scholar 

  22. F. Frusteri et al., Multifunctionality of Cu–ZnO–ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction. Appl. Catal. B 162, 57–65 (2015)

    CAS  Google Scholar 

  23. F. Frusteri et al., Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Appl. Catal. B 176, 522–531 (2015)

    Google Scholar 

  24. G. Bonura et al., Catalytic features of CuZnZr–zeolite hybrid systems for the direct CO2-to-DME hydrogenation reaction. Catal. Today 277, 48–54 (2016)

    CAS  Google Scholar 

  25. G. Bonura et al., DME production by CO2 hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts. Catal. Today 281, 337–344 (2017)

    CAS  Google Scholar 

  26. Y. Zhu et al., Construction of Cu/ZrO2/Al2O3 composites for ethanol synthesis: Synergies of ternary sites for cascade reaction. Appl. Catal. B 166, 551–559 (2015)

    Google Scholar 

  27. T. Witoon et al., Effect of hierarchical meso–macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation. Energy Convers. Manage. 103, 886–894 (2015)

    CAS  Google Scholar 

  28. X. Zhou et al., CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem. Eng. Sci. 153, 10–20 (2016)

    CAS  Google Scholar 

  29. L. Li et al., Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method. J. Power Sources 279, 394–404 (2015)

    CAS  Google Scholar 

  30. H. Yang et al., Core–shell structured Cu@ m-SiO2 and Cu/ZnO@ m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation. Catal. Commun. 84, 56–60 (2016)

    CAS  Google Scholar 

  31. P. Gao et al., Fluorinated Cu/Zn/Al/Zr hydrotalcites derived nanocatalysts for CO2 hydrogenation to methanol. J CO2 Util. 16, 32–41 (2016)

    CAS  Google Scholar 

  32. K. Omri et al., The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Phys. B 537, 167–175 (2018)

    CAS  Google Scholar 

  33. N. Bouazizi et al., Cu0-loaded SBA-15@ ZnO with improved electrical properties and affinity towards hydrogen. Appl. Surf. Sci. 404, 146–153 (2017)

    CAS  Google Scholar 

  34. R. Ouargli et al., SBA-15-supported iron nanoparticles with improved optical properties, conductance and capacitance. Chem. Phys. Lett. 673, 30–37 (2017)

    CAS  Google Scholar 

  35. Y. Zhao et al., Catalytic cracking of polypropylene by using Fe-SBA-15 synthesized in an acid-free medium for production of light hydrocarbon oils. J. Anal. Appl. Pyrol. 146, 104755 (2020)

    CAS  Google Scholar 

  36. Z. Zhang et al., Pd and Pt nanoparticles supported on the mesoporous silica molecular sieve SBA-15 with enhanced activity and stability in catalytic bromate reduction. Chem. Eng. J. 344, 114–123 (2018)

    CAS  Google Scholar 

  37. D. Zhao et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350), 548–552 (1998)

    CAS  PubMed  Google Scholar 

  38. M.M. Araujo et al., Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior. Appl. Surf. Sci. 389, 1137–1147 (2016)

    CAS  Google Scholar 

  39. H. El-Desoky, M. Abdel-Galeil, A. Khalifa, Mesoporous SiO2 (SBA-15) modified graphite electrode as highly sensitive sensor for ultra trace level determination of Dapoxetine hydrochloride drug in human plasma. J. Electroanal. Chem. 846, 113157 (2019)

    CAS  Google Scholar 

  40. R. Ouargli-Saker et al., Metal-loaded SBA-16-like silica–Correlation between basicity and affinity towards hydrogen. Appl. Surf. Sci. 411, 476–486 (2017)

    CAS  Google Scholar 

  41. G. Paleti et al., Direct ethanol condensation to diethyl acetal in the vapour phase at atmospheric pressure over CuNP/SBA-15 catalysts. New J. Chem. 43(25), 10003–10011 (2019)

    CAS  Google Scholar 

  42. D. Zhao et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120(24), 6024–6036 (1998)

    CAS  Google Scholar 

  43. J.S. Beck et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114(27), 10834–10843 (1992)

    CAS  Google Scholar 

  44. A. Hakiki et al., Synthesis and characterization of mesoporous silica SBA-15 functionalized by mono-, di-, and tri-amine and its catalytic behavior towards Michael addition. Mater. Chem. Phys. 212, 415–425 (2018)

    CAS  Google Scholar 

  45. M. Sulpizi, M.-P. Gaigeot, M. Sprik, The Silica-Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties. J. Chem. Theory Comput. 8(3), 1037–1047 (2012)

    CAS  PubMed  Google Scholar 

  46. M. Castellá-Ventura, E. Kassab, Comparative semiempirical and ab initio study of the harmonic vibrational frequencies of aniline—I The ground state. Spectrochim. Acta, Part A 50(1), 69–86 (1994)

    Google Scholar 

  47. A. Jitianu et al., Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe 2 O 3–SiO 2 system, obtained by sol–gel method. J. Mater. Chem. 12(5), 1401–1407 (2002)

    CAS  Google Scholar 

  48. T.A. Zepeda et al., Synthesis and characterization of P-modified mesoporous CoMo/HMS–Ti catalysts. Microporous Mesoporous Mater. 111(1–3), 493–506 (2008)

    CAS  Google Scholar 

  49. J. Ryu, H.-S. Kim, H.T. Hahn, Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. J. Electron. Mater. 40(1), 42–50 (2011)

    CAS  Google Scholar 

  50. Z. Luan et al., Preparation and characterization of (3-aminopropyl) triethoxysilane-modified mesoporous SBA-15 silica molecular sieves. Microporous Mesoporous Mater. 83(1–3), 150–158 (2005)

    CAS  Google Scholar 

  51. I. Terrab et al., Assessment of the intrinsic interactions of mesoporous silica with carbon dioxide. Res. Chem. Intermed. 43(7), 3775–3786 (2017)

    CAS  Google Scholar 

  52. L. Wang et al., Structure and optical properties of ZnO: V thin films with different doping concentrations. Thin Solid Films 517(13), 3721–3725 (2009)

    CAS  Google Scholar 

  53. Rodríguez, J.A. and M. Fernández-García, Synthesis, properties, and applications of oxide nanomaterials. 2007: John Wiley & Sons.

  54. N. Bouazizi et al., Metal-organo-zinc oxide materials: Investigation on the structural, optical and electrical properties. J. Alloy. Compd. 656, 146–153 (2016)

    CAS  Google Scholar 

  55. N. Bouazizi, R. Ben slama, B. Chaouachi, S. Ammar, A. Azzouz et al., Synthesis and characterization of SnO2 HMD-Fe materials with improved electric properties and affinity towards hydrogen. Ceram. Int 42, 9413–9418 (2016)

    CAS  Google Scholar 

  56. A. Kaushal, D. Kaur, Pulsed laser deposition of transparent ZnO/MgO multilayers. J. Alloy. Compd. 509(2), 200–205 (2011)

    CAS  Google Scholar 

  57. K.G. Chandrappa et al., A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles. J. Nanopart. Res. 12(7), 2667–2678 (2010)

    CAS  Google Scholar 

  58. G. Petrini et al., Deactivation phenomena on Ti-silicalite. Stud Surf Sci Catal. 68, 761–766 (1991)

    CAS  Google Scholar 

  59. S. Selvasekarapandian, M. Vijayakumar, The ac impedance spectroscopy studies on LiDyO2. Mater. Chem. Phys. 80(1), 29–33 (2003)

    CAS  Google Scholar 

  60. W.A. England et al., Fast proton conduction in inorganic ion-exchange compounds. Solid State Ionics 1(3–4), 231–249 (1980)

    CAS  Google Scholar 

  61. C.K. Maiti et al., Electrical characterization of TiO2 gate oxides on strained-Si. Microelectron. Eng. 72(1–4), 253–256 (2004)

    CAS  Google Scholar 

  62. K.K. Saini et al., Structural and optical properties of TiO2 thin films derived by sol–gel dip coating process. J. Non-Cryst. Solids 353(24–25), 2469–2473 (2007)

    CAS  Google Scholar 

  63. N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244(5–6), 456–462 (1995)

    CAS  Google Scholar 

  64. A.K. Jonscher, The ‘universal’dielectric response. Nature 267(5613), 673–679 (1977)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Azzouz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouargli-Saker, R., Bouazizi, N., Lassouad, S. et al. Copper-loaded SBA-15 Silica with Improved Electron Mobility-Conductance and Capacitance Properties. J Inorg Organomet Polym 30, 5108–5117 (2020). https://doi.org/10.1007/s10904-020-01642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01642-2

Keywords

Navigation