Skip to main content
Log in

Polarization Effects of Electro-optic Sampling and Over-rotation for High Field THz Detection

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

With ever increasing availability of terahertz fields, it is important to find suitable detection techniques without compromising the measured dynamic range. Electro-optic terahertz sampling techniques, which are commonly used to detect terahertz fields, exhibit over-rotation at high fields that limit the detection accuracy. Here we discuss a method to correct for over-rotation that put no limits on measured terahertz field strengths, while preserving the low field sensitivity. We further evaluate the induced polarizations at high terahertz fields and show how over-rotation can be corrected by simultaneously measuring the polarizations before and after the quarter wave plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Susan L Dexheimer. Terahertz spectroscopy: principles and applications. CRC press, 2007.

  2. Paul CM Planken, Han-Kwang Nienhuys, Huib J Bakker, and Tom Wenckebach. Measurement and calculation of the orientation dependence of terahertz pulse detection in znte. JOSA B, 18(3):313–317, 2001.

  3. Akram Ibrahim, Denis Férachou, Gargi Sharma, Kanwarpal Singh, Marie Kirouac-Turmel, and Tsuneyuki Ozaki. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation. Scientific reports, 6:23107, 2016.

  4. D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Opt. Lett., 18(4):290–292, Feb 1993.

  5. E. Budiarto, J. Margolies, S. Jeong, J. Son, and J. Bokor. High-intensity terahertz pulses at 1-khz repetition rate. IEEE Journal of Quantum Electronics, 32(10):1839–1846, Oct 1996.

  6. Ki-Yong Kim, James H Glownia, Antoinette J Taylor, and George Rodriguez. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 15(8):4577–4584, 2007.

  7. Jeroen van Tilborg, CB Schroeder, Cs Tóth, CGR Geddes, Eric Esarey, and WP Leemans. Single-shot spatiotemporal measurements of high-field terahertz pulses. Optics letters, 32(3):313–315, 2007.

  8. T Bartel, P Gaal, K Reimann, Michael Woerner, and Thomas Elsaesser. Generation of single-cycle thz transients with high electric-field amplitudes. Optics Letters, 30(20):2805–2807, 2005.

  9. H Hirori, A Doi, F Blanchard, and K Tanaka. Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in linbo 3. Applied Physics Letters, 98(9):091106, 2011.

  10. Mengkun Liu, Harold Y Hwang, Hu Tao, Andrew C Strikwerda, Kebin Fan, George R Keiser, Aaron J Sternbach, Kevin G West, Salinporn Kittiwatanakul, Jiwei Lu, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487(7407):345, 2012.

  11. Mostafa Shalaby, Carlo Vicario, and Christoph P Hauri. Simultaneous electronic and the magnetic excitation of a ferromagnet by intense thz pulses. New Journal of Physics, 18(1):013019, 2016.

  12. Ryusuke Matsunaga, Yuki I Hamada, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, and Ryo Shimano. Higgs amplitude mode in the bcs superconductors nb 1- x ti x n induced by terahertz pulse excitation. Physical review letters, 111(5):057002, 2013.

  13. Ryusuke Matsunaga, Naoto Tsuji, Hiroyuki Fujita, Arata Sugioka, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, Hideo Aoki, and Ryo Shimano. Light-induced collective pseudospin precession resonating with higgs mode in a superconductor. Science, 345(6201):1145–1149, 2014.

  14. Xian Li, Tian Qiu, Jiahao Zhang, Edoardo Baldini, Jian Lu, Andrew M Rappe, and Keith A Nelson. Terahertz field–induced ferroelectricity in quantum paraelectric srtio3. Science, 364(6445):1079–1082, 2019.

  15. TF Nova, AS Disa, Michael Fechner, and Andrea Cavalleri. Metastable ferroelectricity in optically strained srtio3. Science, 364(6445):1075–1079, 2019.

  16. Hadi Razavipour, Wayne Yang, Abdeladim Guermoune, Michael Hilke, David G Cooke, Ibraheem Al-Naib, Marc M Dignam, François Blanchard, Hassan A Hafez, Xin Chai, et al. High-field response of gated graphene at terahertz frequencies. Physical Review B, 92(24):245421, 2015.

  17. Ali Mousavian, Byounghwak Lee, Andrew D. Stickel, and Yun-Shik Lee. Ultrafast photocarrier dynamics in single-layer graphene driven by strong terahertz pulses. J. Opt. Soc. Am. B, 35(6):1255–1259, Jun 2018.

  18. M. B. Agranat, O. V. Chefonov, A. V. Ovchinnikov, S. I. Ashitkov, V. E. Fortov, and P. S. Kondratenko. Damage in a thin metal film by high-power terahertz radiation. Phys. Rev. Lett., 120:085704, Feb 2018.

  19. Abel Woldegeorgis, Takayuki Kurihara, Mohammed Almassarani, Burgard Beleites, Ronny Grosse, Falk Ronneberger, and Amrutha Gopal. Multi-mv/cm longitudinally polarized terahertz pulses from laser-thin foil interaction. Optica, 5(11):1474–1477, Nov 2018.

  20. Kensuke Teramoto, Shigeki Tokita, Tokinori Terao, Shunsuke Inoue, Ryo Yasuhara, Takeshi Nagashima, Sadaoki Kojima, Junji Kawanaka, Kazuaki Mori, Masaki Hashida, and Shuji Sakabe. Half-cycle terahertz surface waves with mv/cm field strengths generated on metal wires. Applied Physics Letters, 113(5):051101, 2018.

  21. C Vicario, C Ruchert, and CP Hauri. High field broadband thz generation in organic materials. Journal of Modern Optics, 62(18):1480–1485, 2015.

  22. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri. Generation of 0.9-mj thz pulses in dstms pumped by a cr:mg2sio4 laser. Opt. Lett., 39(23):6632–6635, Dec 2014.

  23. C. Vicario, M. Jazbinsek, A. V. Ovchinnikov, O. V. Chefonov, S. I. Ashitkov, M. B. Agranat, and C. P. Hauri. High efficiency thz generation in dstms, dast and oh1 pumped by cr:forsterite laser. Opt. Express, 23(4):4573–4580, Feb 2015.

  24. Carlo Vicario, Mostafa Shalaby, and Christoph P Hauri. Subcycle extreme nonlinearities in gap induced by an ultrastrong terahertz field. Physical review letters, 118(8):083901, 2017.

  25. Yun-Shik Lee. Principles of terahertz science and technology, volume 170. Springer Science & Business Media, 2009.

  26. Kai-Erik Peiponen, Axel Zeitler, and Makoto Kuwata-Gonokami. Terahertz spectroscopy and imaging, volume 171. Springer, 2012.

  27. Amnon Yariv. Quantum electronics, 3rd. Edn.(John WieLy & Sons, New York, 1988) p, 389, 1989.

  28. Gregory Bell. A terahertz emission spectrometer for the study of ultrafast carrier dynamics in semiconductors. Master’s thesis, McGill University Libraries, 2017.

  29. DTF Marple. Refractive index of znse, znte, and cdte. Journal of Applied Physics, 35(3):539–542, 1964.

  30. Edward Collett. Field guide to polarization, volume 15. SPIE press Bellingham, 2005.

  31. José J Gil and Eusebio Bernabeu. Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its mueller matrix. Optik, 76(2):67–71, 1987.

  32. Mira Naftaly and Richard Dudley. Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Optics letters, 34(8):1213–1215, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Bell.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, G., Hilke, M. Polarization Effects of Electro-optic Sampling and Over-rotation for High Field THz Detection. J Infrared Milli Terahz Waves 41, 880–893 (2020). https://doi.org/10.1007/s10762-020-00724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00724-z

Keywords

Navigation