Skip to main content

Advertisement

Log in

Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform

  • Metabolic Engineering and Synthetic Biology - Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Yarrowia lipolytica is an oleaginous yeast that has been substantially engineered for production of oleochemicals and drop-in transportation fuels. The unique acetyl-CoA/malonyl-CoA supply mode along with the versatile carbon-utilization pathways makes this yeast a superior host to upgrade low-value carbons into high-value secondary metabolites and fatty acid-based chemicals. The expanded synthetic biology toolkits enabled us to explore a large portfolio of specialized metabolism beyond fatty acids and lipid-based chemicals. In this review, we will summarize the recent advances in genetic, omics, and computational tool development that enables us to streamline the genetic or genomic modification for Y. lipolytica. We will also summarize various metabolic engineering strategies to harness the endogenous acetyl-CoA/malonyl-CoA/HMG-CoA pathway for production of complex oleochemicals, polyols, terpenes, polyketides, and commodity chemicals. We envision that Y. lipolytica will be an excellent microbial chassis to expand nature’s biosynthetic capacity to produce plant secondary metabolites, industrially relevant oleochemicals, agrochemicals, commodity, and specialty chemicals and empower us to build a sustainable biorefinery platform that contributes to the prosperity of a bio-based economy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cordova LT, Alper HS (2016) Central metabolic nodes for diverse biochemical production. Curr Opin Chem Biol 35:37–42

    CAS  PubMed  Google Scholar 

  2. Levering J, Broddrick J, Zengler K (2015) Engineering of oleaginous organisms for lipid production. Curr Opin Biotechnol 36:32–39

    CAS  PubMed  Google Scholar 

  3. Quarterman J et al (2017) A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate. Appl Microbiol Biotechnol 101(8):3319–3334

    CAS  PubMed  Google Scholar 

  4. Groenewald M et al (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40(3):187–206

    CAS  PubMed  Google Scholar 

  5. Kavscek M et al (2015) Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. Bmc Syst Biol 9:72

    PubMed  PubMed Central  Google Scholar 

  6. Shi SB, Zhao HM (2017) Metabolic engineering of Oleaginous yeasts for production of fuels and chemicals. Front Microbiol 8:2185

    PubMed  PubMed Central  Google Scholar 

  7. Ledesma-Amaro R, Nicaud JM (2016) Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol 34(10):798–809

    CAS  PubMed  Google Scholar 

  8. Michely S et al (2013) Comparative physiology of Oleaginous species from the Yarrowia Clade. PLoS One 8(5):e63356

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Devillers H et al (2016) Draft genome sequence of Yarrowia tipotytica strain a-101 isolated from polluted soil in Poland. Microbiol Resour Announc 4(5):e01094-16

    Google Scholar 

  10. Devillers H, Neuveglise C (2019) Genome sequence of the oleaginous yeast Yarrowia lipolytica H222. Microbiol Resour Announc 8(4):e01547-18

    PubMed  PubMed Central  Google Scholar 

  11. Darvishi F et al (2018) Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals. Appl Microbiol Biotechnol 102(14):5925–5938

    CAS  PubMed  Google Scholar 

  12. Dulermo R et al (2017) Using a vector pool containing variable-strength promoters to optimize protein production in Yarrowia lipolytica. Microbial Cell Factories 16:31

    PubMed  PubMed Central  Google Scholar 

  13. Wong L et al (2017) YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab Eng Commun 5(Supplement C):68–77

    PubMed  PubMed Central  Google Scholar 

  14. Wong L et al. (2019) Genetic tools for streamlined and accelerated pathway engineering in Yarrowia lipolytica, in microbial metabolic engineering: methods and protocols. In: Santos CNS, Ajikumar PK (Eds) Springer, New York, p. 155–177

  15. Madzak C, Treton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2(2):207–216

    CAS  PubMed  Google Scholar 

  16. Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8(1):46–58

    CAS  PubMed  Google Scholar 

  17. Blazeck J et al (2013) Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Appl Microbiol Biotechnol 97(7):3037–3052

    CAS  PubMed  Google Scholar 

  18. Shabbir Hussain M et al (2016) Engineering promoter architecture in oleaginous yeast Yarrowia lipolytica. Acs Synth Biol 5(3):213–223

    CAS  PubMed  Google Scholar 

  19. Larroude M et al (2018) Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol Adv 36(8):2150–2164

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong SP et al (2012) Engineering Yarrowia lipolytica to express secretory invertase with strong FBA1IN promoter. Yeast 29(2):59–72

    CAS  PubMed  Google Scholar 

  21. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    CAS  PubMed  Google Scholar 

  22. Trassaert M et al (2017) New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica. Microbial Cell Factories 16:141

    PubMed  PubMed Central  Google Scholar 

  23. Pignede G et al (2000) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182(10):2802–2810

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Curran KA et al (2015) Short synthetic terminators for improved heterologous gene expression in yeast. Acs Synth Biol 4(7):824–832

    CAS  PubMed  Google Scholar 

  25. Blazeck J et al (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol 77(22):7905–7914

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Dall MT, Nicaud JM, Gaillardin C (1994) Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet 26(1):38–44

    PubMed  Google Scholar 

  27. Kretzschmar A et al (2013) Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining. Curr Genet 59(1–2):63–72

    CAS  PubMed  Google Scholar 

  28. Wagner JM, Williams EV, Alper HS (2018) Developing a piggyBac transposon system and compatible selection markers for insertional mutagenesis and genome engineering in Yarrowia lipolytica. Biotechnol J 13(5):e1800022

    PubMed  Google Scholar 

  29. Hamilton M et al (2020) Identification of a Yarrowia lipolytica acetamidase and its use as a yeast genetic marker. Microb Cell Fact 19(1):22

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaw AJ et al (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353(6299):583–586

    CAS  PubMed  Google Scholar 

  31. De Pourcq K et al (2012) Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man(8)GlcNAc(2) and Man(5)GlcNAc(2). Microb Cell Fact 11:53

    PubMed  PubMed Central  Google Scholar 

  32. Lv YK et al (2019) Combining 26s rDNA and the Cre-IoxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica. Acs Synth Biol 8(3):568–576

    CAS  PubMed  Google Scholar 

  33. Madzak C (2015) Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 99(11):4559–4577

    CAS  PubMed  Google Scholar 

  34. Fickers P et al (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55(3):727–737

    CAS  PubMed  Google Scholar 

  35. Schwartz CM et al (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency crispr-cas9-mediated genome editing in Yarrowia lipolytica. Acs Synth Biol 5(4):356–359

    CAS  PubMed  Google Scholar 

  36. Liu LQ et al (2014) Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function. FEMS Yeast Res 14(7):1124–1127

    CAS  PubMed  Google Scholar 

  37. Holkenbrink C et al (2018) EasyCloneYALI: CRISPR/Cas9-based synthetic toolbox for engineering of the yeast Yarrowia lipolytica. Biotechnol J 13(9):e1700543

    PubMed  Google Scholar 

  38. Bulani SI et al (2012) Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica. Amb Express 2(1):27

    PubMed  PubMed Central  Google Scholar 

  39. Bordes F et al (2007) A new recombinant protein expression system for high-throughput screening in the yeast Yarrowia lipolytica. J Microbiol Methods 70(3):493–502

    CAS  PubMed  Google Scholar 

  40. Juretzek T et al (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18(2):97–113

    CAS  PubMed  Google Scholar 

  41. Nicaud JM et al (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2(3):371–379

    CAS  PubMed  Google Scholar 

  42. Guo ZP et al (2020) An artificial chromosome ylAC enables efficient assembly of multiple genes in Yarrowia lipolytica for biomanufacturing. Commun Biol 3(1):199

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao SL et al (2014) One-step integration of multiple genes into the oleaginous yeast Yarrowia lipolytica. Biotech Lett 36(12):2523–2528

    CAS  Google Scholar 

  44. Xu P et al (2012) ePathBrick: a synthetic biology platform for engineering metabolic pathways in E-coli. ACS Synth Biol 1(7):256–266

    CAS  PubMed  Google Scholar 

  45. Leplat C, Nicaud JM, Rossignol T (2015) High-throughput transformation method for Yarrowia lipolytica mutant library screening. Fems Yeast Res 15(6):fov052

    PubMed  Google Scholar 

  46. Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    CAS  PubMed  Google Scholar 

  47. Rodriguez GM et al (2016) Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Biotechnol Biofuels 9:149

    PubMed  PubMed Central  Google Scholar 

  48. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3(11):e3647

    PubMed  PubMed Central  Google Scholar 

  49. Celinska E et al (2017) Golden gate assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Microb Biotechnol 10(2):450–455

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Larroude M et al (2019) A modular golden gate toolkit for Yarrowia lipolytica synthetic biology. Microb Biotechnol 12(6):1249–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao SL et al (2016) Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J Ind Microbiol Biotechnol 43(8):1085–1093

    CAS  PubMed  Google Scholar 

  53. Schwartz C et al (2019) Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica. Metab Eng 55:102–110

    CAS  PubMed  Google Scholar 

  54. Yang Z, Edwards H, Xu P (2020) CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metab Eng Commun 10:e00112

    PubMed  Google Scholar 

  55. Schwartz C et al (2017) CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica. Biotechnol Bioeng 114(12):2896–2906

    CAS  PubMed  Google Scholar 

  56. Zhang JL et al (2018) Gene repression via multiplex gRNA strategy in Y. lipolytica. Microbial Cell Factories 17:62

    PubMed  PubMed Central  Google Scholar 

  57. Schwartz C et al (2018) Multiplexed CRISPR activation of cryptic sugar metabolism enables Yarrowia lipolytica growth on cellobiose. Biotechnol J 13(9):e1700584

    PubMed  Google Scholar 

  58. Lazar Z, Liu N, Stephanopoulos G (2018) Holistic approaches in lipid production by Yarrowia lipolytica. Trends Biotechnol 36(11):1157–1170

    CAS  PubMed  Google Scholar 

  59. Xu P et al (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13(5):578–587

    CAS  PubMed  Google Scholar 

  60. Loira N et al (2012) A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst Biol 6:35

    PubMed  PubMed Central  Google Scholar 

  61. Pan P, Hua Q (2012) Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS ONE 7(12):e51535

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kerkhoven EJ et al (2016) Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj Syst Biol Appl 2:16005

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mishra P et al (2018) Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. Bmc Syst Biol 12(Suppl 2):12

    PubMed  PubMed Central  Google Scholar 

  64. Kim M et al (2019) In silico identification of metabolic engineering strategies for improved lipid production in Yarrowia lipolytica by genome-scale metabolic modeling. Biotechnol Biofuels 12:187

    PubMed  PubMed Central  Google Scholar 

  65. Robles-Rodriguez CE et al (2017) Dynamic metabolic modeling of lipid accumulation and citric acid production by Yarrowia lipolytica. Comput Chem Eng 100:139–152

    CAS  Google Scholar 

  66. Wang GY et al (2018) Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta Mol Cell Biol Lipids 1863(1):81–90

    CAS  PubMed  Google Scholar 

  67. Trebulle P et al (2017) Inference and interrogation of a coregulatory network in the context of lipid accumulation in Yarrowia lipolytica. Npj Syst Biol Appl 3:21

    PubMed  PubMed Central  Google Scholar 

  68. Xu P et al (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci USA 113(39):10848–10853

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu P et al (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409

    PubMed  Google Scholar 

  70. Ledesma-Amaro R et al (2016) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46

    CAS  PubMed  Google Scholar 

  71. Spagnuolo M, Yaguchi A, Blenner M (2019) Oleaginous yeast for biofuel and oleochemical production. Curr Opin Biotechnol 57:73–81

    CAS  PubMed  Google Scholar 

  72. Bruder S et al (2019) Drop-in biofuel production using fatty acid photodecarboxylase from Chlorella variabilis in the oleaginous yeast Yarrowia lipolytica. Biotechnol Biofuels 12(1):202

    PubMed  PubMed Central  Google Scholar 

  73. Rutter CD, Rao CV (2016) Production of 1-decanol by metabolically engineered Yarrowia lipolytica. Metab Eng 38:139–147

    CAS  PubMed  Google Scholar 

  74. Wang GK et al (2016) Exploring fatty alcohol-producing capability of Yarrowia lipolytica. Biotechnol Biofuels 9:107

    PubMed  PubMed Central  Google Scholar 

  75. Zhang JL et al (2019) High production of fatty alcohols in Yarrowia lipolytica by coordination with glycolysis. Sci China-Chem 62(8):1007–1016

    CAS  Google Scholar 

  76. Duda K et al (2018) Comparison of performance and emissions of a CRDI diesel engine fuelled with biodiesel of different origin. Fuel 212:202–222

    CAS  Google Scholar 

  77. Xu P, Qiao K, Stephanopoulos G (2017) Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng 114(7):1521–1530

    CAS  PubMed  Google Scholar 

  78. Friedlander J et al (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9:77

    PubMed  PubMed Central  Google Scholar 

  79. Xu JY et al (2017) Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proc Natl Acad Sci USA 114(27):E5308–E5316

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Qiao KJ et al (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35(2):173–177

    CAS  PubMed  Google Scholar 

  81. Liu H et al (2019) Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica. Appl Microbiol Biotechnol 103(7):3167–3179

    CAS  PubMed  Google Scholar 

  82. Xie DM, Jackson EN, Zhu Q (2015) Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol 99(4):1599–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Xie DM et al (2017) Omega-3 production by fermentation of Yarrowia lipolytica: from fed-batch to continuous. Biotechnol Bioeng 114(4):798–812

    CAS  PubMed  Google Scholar 

  84. Gemperlein K et al (2019) Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases. Nat Commun 10:4055

    PubMed  PubMed Central  Google Scholar 

  85. Sun ML et al (2017) Engineering Yarrowia lipolytica for efficient gamma-linolenic acid production. Biochem Eng J 117:172–180

    CAS  Google Scholar 

  86. Liu HH et al (2017) Engineering Yarrowia lipolytica for arachidonic acid production through rapid assembly of metabolic pathway. Biochem Eng J 119:52–58

    CAS  Google Scholar 

  87. Liu HH et al (2019) Improved production of arachidonic acid by combined pathway engineering and synthetic enzyme fusion in Yarrowia lipolytica. J Agric Food Chem 67(35):9851–9857

    CAS  PubMed  Google Scholar 

  88. Imatoukene N et al (2017) A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 101(11):4605–4616

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fu GY et al (2016) Cloning and characterization of a pyruvate carboxylase gene from penicillium rubens and overexpression of the gene in the yeast Yarrowia lipolytica for enhanced citric acid production. Mar Biotechnol 18(1):1–14

    CAS  Google Scholar 

  90. Tan MJ et al (2016) Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst Eng 39(8):1289–1296

    CAS  PubMed  Google Scholar 

  91. Kamzolova SV, Morgunov IG (2017) Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica. Biores Technol 243:433–440

    CAS  Google Scholar 

  92. Zeng WZ et al (2015) A high-throughput screening procedure for enhancing alpha-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis. Process Biochem 50(10):1516–1522

    CAS  Google Scholar 

  93. Zeng WZ et al (2016) Comparative genomics analysis of a series of Yarrowia lipolytica WSH-Z06 mutants with varied capacity for alpha-ketoglutarate production. J Biotechnol 239:76–82

    CAS  PubMed  Google Scholar 

  94. Zeng WZ et al (2017) Biosynthesis of keto acids by fed-batch culture of Yarrowia lipolytica WSH-Z06. Biores Technol 243:1037–1043

    CAS  Google Scholar 

  95. Gao CJ et al (2016) Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol Biofuels 9:179

    PubMed  PubMed Central  Google Scholar 

  96. Yang XF et al (2017) Restoring of Glucose Metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy. J Agric Food Chem 65(20):4133–4139

    CAS  PubMed  Google Scholar 

  97. Li C et al (2018) Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowia lipolytica. J Clean Prod 179:151–159

    CAS  Google Scholar 

  98. Li C et al (2019) Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control. Chem Eng J 371:804–812

    CAS  Google Scholar 

  99. Carlya F et al (2017) Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering. Metab Eng 42:19–24

    Google Scholar 

  100. Qiu X et al (2020) Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metab Eng 60:66–76

    CAS  PubMed  Google Scholar 

  101. Marsafari M et al (2020) Genetically-encoded biosensors for analyzing and controlling cellular process in yeast. Curr Opin Biotechnol 64:175–182

    CAS  PubMed  Google Scholar 

  102. Lv Y et al (2020) Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metab Eng 61:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Li ZJ et al (2017) Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production. J Ind Microbiol Biotechnol 44(4–5):605–612

    CAS  PubMed  Google Scholar 

  104. Markham KA et al (2018) Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc Natl Acad Sci USA 115(9):2096–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu H et al (2019) Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab Eng 56:60–68

    CAS  PubMed  Google Scholar 

  106. Lv Y et al (2019) Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synth Biol 8(11):2514–2523

    CAS  PubMed  Google Scholar 

  107. Chandran SS, Kealey JT, Reeves CD (2011) Microbial production of isoprenoids. Process Biochem 46(9):1703–1710

    CAS  Google Scholar 

  108. Ma YR et al (2019) Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids. Bioresour Technol 281:449–456

    CAS  PubMed  Google Scholar 

  109. Ignea C et al (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. Acs Synth Biol 3(5):298–306

    CAS  PubMed  Google Scholar 

  110. Cao X et al (2017) Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica. Biores Technol 245:1641–1644

    CAS  Google Scholar 

  111. Cao X et al (2016) Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction. Biotechnol Biofuels 9:214

    PubMed  PubMed Central  Google Scholar 

  112. Yang X et al (2016) Heterologous production of alpha-farnesene in metabolically engineered strains of Yarrowia lipolytica. Biores Technol 216:1040–1048

    CAS  Google Scholar 

  113. Jia D et al (2019) Yarrowia lipolytica construction for heterologous synthesis of -santalene and fermentation optimization. Appl Microbiol Biotechnol 103(8):3511–3520

    CAS  PubMed  Google Scholar 

  114. Guo XY et al (2018) Heterologous biosynthesis of (+)-nootkatone in unconventional yeast Yarrowia lipolytica. Biochem Eng J 137:125–131

    CAS  Google Scholar 

  115. Marsafari M, Xu P (2020) Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica. Metab Eng Commun 10:e00121

    PubMed  PubMed Central  Google Scholar 

  116. Pateraki I, Heskes AM, Hamberger B (2015) Cytochromes P450 for terpene functionalisation and metabolic engineering. Adv Biochem Eng Biotechnol 148:107–39

    CAS  PubMed  Google Scholar 

  117. Sun J et al (2019) Glycerol improves heterologous biosynthesis of betulinic acid in engineered Yarrowia lipolytica. Chem Eng Sci 196:82–90

    CAS  Google Scholar 

  118. Jin CC et al (2019) Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microbial Cell Factories 18:77

    PubMed  PubMed Central  Google Scholar 

  119. Li DS et al (2019) Production of triterpene ginsenoside compound K in the non-conventional yeast Yarrowia lipolytica. J Agric Food Chem 67(9):2581–2588

    CAS  PubMed  Google Scholar 

  120. Mata-Gomez LC et al (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12

    PubMed  PubMed Central  Google Scholar 

  121. Schwartz C et al (2017) Host and pathway engineering for enhanced lycopene biosynthesis in Yarrowia lipolytica. Front Microbiol 8:2233

    PubMed  PubMed Central  Google Scholar 

  122. Gao SL et al (2017) Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous beta-carotene production. Metab Eng 41:192–201

    CAS  PubMed  Google Scholar 

  123. Larroude M et al (2018) A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of beta-carotene. Biotechnol Bioeng 115(2):464–472

    CAS  PubMed  Google Scholar 

  124. Kildegaard KR et al (2017) Engineering of Yarrowia lipolytica for production of astaxanthin. Synth Syst Biotechnol 2(4):287–294

    PubMed  PubMed Central  Google Scholar 

  125. Du HX et al (2016) Engineering Yarrowia lipolytica for campesterol overproduction. PLoS One 11(1):e0146773

    PubMed  PubMed Central  Google Scholar 

  126. Zhang Y et al (2017) Improved campesterol production in engineered Yarrowia lipolytica strains. Biotech Lett 39(7):1033–1039

    CAS  Google Scholar 

  127. Zhang R et al (2019) Pregnenolone overproduction in Yarrowia lipolytica by integrative components pairing of the cytochrome P450scc system. Acs Synth Biol 8(12):2666–2678

    CAS  PubMed  Google Scholar 

  128. Wagner JM et al (2018) A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: riboflavin overproduction in Yarrowia lipolytica. Metab Eng 47:346–356

    CAS  PubMed  Google Scholar 

  129. Gu Y et al (2020) Refactoring ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica. ACS Synth Biol 9(3):623–633

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gu Y et al. (2020) Engineering Yarrowia lipolytica as a chassis for de novo synthesis of aromatic-derived natural products and chemicals. bioRxiv: p. 2020.04.04.025288

  131. Spagnuolo M et al. (2018) Alternative substrate metabolism in Yarrowia lipolytica. Front Microbiol 9

  132. den Haan R et al (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 33:32–8

    Google Scholar 

  133. Lane S et al (2015) Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnol Bioeng 112(5):1012–1022

    CAS  PubMed  Google Scholar 

  134. Lazar Z et al (2014) Hexokinase-a limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng 26:89–99

    CAS  PubMed  Google Scholar 

  135. Rakicka M et al (2016) Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase. Chem Pap 70(11):1452–1459

    CAS  Google Scholar 

  136. Hapeta P et al (2017) Transforming sugars into fat—lipid biosynthesis using different sugars in Yarrowia lipolytica. Yeast 34(7):293–304

    CAS  PubMed  Google Scholar 

  137. Ledesma-Amaro R, Dulermo T, Nicaud JM (2015) Engineering Yarrowia lipolytica to produce biodiesel from raw starch. Biotechnol Biofuels 8:148

    PubMed  PubMed Central  Google Scholar 

  138. Lazar Z et al (2015) Awakening the endogenous Leloir pathway for efficient galactose utilization by Yarrowia lipolytica. Biotechnol Biofuels 8:185

    PubMed  PubMed Central  Google Scholar 

  139. Ledesma-Amaro R et al (2016) Metabolic engineeringof Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124

    CAS  PubMed  Google Scholar 

  140. Wu YF et al (2019) Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Microbial Cell Factories 18:83

    PubMed  PubMed Central  Google Scholar 

  141. Beopoulos A, Chardot T, Nicaud JM (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91(6):692–6

    CAS  PubMed  Google Scholar 

  142. Fickers P et al (2005) Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol 42(3):264–74

    CAS  PubMed  Google Scholar 

  143. Yu M et al (2007) High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expr Purif 53(2):255–63

    CAS  PubMed  Google Scholar 

  144. Kohlwein SD, Paltauf F (1984) Uptake of fatty acids by the yeasts, Saccharomyces uvarum and Saccharomycopsis lipolytica. Biochim Biophys Acta 792(3):310–7

    CAS  PubMed  Google Scholar 

  145. Kamzolova SV et al (2005) Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat. Food Technol Biotechnol 43(2):113–122

    CAS  Google Scholar 

  146. Liu XY et al (2017) A cost-effective process for the coproduction of erythritol and lipase with Yarrowia lipolytica M53 from waste cooking oil. Food Bioprod Process 103:86–94

    CAS  Google Scholar 

  147. Pang YR et al (2019) Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil. Biotechnol Biofuels 12(1):241

    PubMed  PubMed Central  Google Scholar 

  148. Magdouli S et al (2017) Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica. Biores Technol 243:57–68

    CAS  Google Scholar 

  149. Sarris D et al (2017) Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng Life Sci 17(6):695–709

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Fickers P et al (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–43

    CAS  PubMed  Google Scholar 

  151. Workman M, Holt P, Thykaer J (2013) Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. Amb Express 3:58

    PubMed  PubMed Central  Google Scholar 

  152. Gajdos P, Nicaud JM, Certik M (2017) Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Eng Life Sci 17(3):325–332

    CAS  PubMed  Google Scholar 

  153. Mironczuk AM et al (2016) A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol. Biotechnol Biofuels 9:180

    PubMed  PubMed Central  Google Scholar 

  154. Rzechonek DA et al (2019) Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica. Biores Technol 271:340–344

    CAS  Google Scholar 

  155. Liu N, Qiao KJ, Stephanopoulos G (2016) C-13 Metabolic flux analysis of acetate conversion to lipids by Yarrowia lipolytica. Metab Eng 38:86–97

    CAS  PubMed  Google Scholar 

  156. Lv Y et al (2019) Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction. Metab Eng 54:109–116

    CAS  PubMed  Google Scholar 

  157. Wan X, Marsafari M, Xu P (2019) Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives. Microb Cell Fact 18(1):61

    PubMed  PubMed Central  Google Scholar 

  158. Xu P (2018) Production of chemicals using dynamic control of metabolic fluxes. Curr Opin Biotechnol 53:12–19

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bill and Melinda Gates Foundation (Grant number OPP1188443) and the Cellular and Biochem Engineering Program of the National Science Foundation under Grant no.1805139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xu.

Ethics declarations

Conflict of interests

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Gu, Y., Marsafari, M. et al. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform. J Ind Microbiol Biotechnol 47, 845–862 (2020). https://doi.org/10.1007/s10295-020-02290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02290-8

Keywords

Navigation