Skip to main content
Log in

Peculiarities of Propagation and Amplification of Ultrashort Terahertz Pulses in Strongly Nonequilibrium Plasma Channels Produced in Air by UV Femtosecond Laser Pulses during Multiquantum Ionization

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The propagation of an ultrashort terahertz (THz) pulse in a nonequilibrium plasma channel produced by a UV femtosecond laser pulse in air is investigated theoretically. The analysis is carried out based on joint solution of the second-order wave equation and the Boltzmann kinetic equation in the binomial approximation for the electron velocity distribution function in the channel plasma. We assume that a THz pulse is quite weak and does not produce a reverse action on the electron energy spectrum in the channel plasma. It is shown that the plasma channel in air under a pressure of several atmospheres is a medium for effective amplification of ultrashort THz pulses in the frequency range up to several terahertz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. Tonouchi, Nat. Photon. 1, 97 (2007).

    Article  ADS  Google Scholar 

  2. N. Nagai, M. Sumitomo, M. Imaizumi, and R. Fukasawa, Semicond. Sci. Technol. 21, 201 (2006).

    Article  ADS  Google Scholar 

  3. J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, Nat. Photon. 4, 627 (2010).

    Article  ADS  Google Scholar 

  4. B. M. Fischer, M. Walther, and P. U. Jepsen, Phys. Med. Biol. 47, 38071 (2002).

    Article  Google Scholar 

  5. W. H. Fan, A. Burnett, P. C. Upadhya, J. Cunningham, E. H. Linfield, and A. G. Davies, Appl. Spectrosc. 61, 638 (2007).

    Article  ADS  Google Scholar 

  6. N. Laman, S. Harsha, and D. Grischkowsky, Appl. Spectrosc. 62, 319 (2008).

    Article  ADS  Google Scholar 

  7. Y.-Ch. Shen, Int. J. Pharm. 417, 48 (2011).

    Article  Google Scholar 

  8. M. D. Mittleman, Opt. Express 26, 9417 (2018).

    Article  ADS  Google Scholar 

  9. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).

    Article  ADS  Google Scholar 

  10. M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 11202 (2004).

    Article  Google Scholar 

  11. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Opt. Express 15, 4577 (2007).

    Article  ADS  Google Scholar 

  12. V. Yu. Fedorov et al., Plasma Phys. Control. Fusion 59, 014025 (2017).

    Article  ADS  Google Scholar 

  13. D. Dietze, J. Darmo, S. Roither, A. Pugzlys, J. N. Heyman, and K. Unterrainer, J. Opt. Soc. Am. B 26, 2016 (2009).

    Article  ADS  Google Scholar 

  14. F. Théberge, M. Chåteauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).

    Article  ADS  Google Scholar 

  15. M. Esaulkov, O. Kosareva, V. Makarov, N. Panov, and A. Shkurinov, Front. Optoelectron. 8, 73 (2014).

    Article  Google Scholar 

  16. A. A. Silaev and N. V. Vvedenskii, Phys. Rev. Lett. 102, 115005 (2009).

    Article  ADS  Google Scholar 

  17. I. Babushkin, S. Skupin, and J. Herrmann, Opt. Express 18, 9658 (2010).

    Article  ADS  Google Scholar 

  18. M. Clerici et al., Phys. Rev. Lett. 110, 253901 (2013).

    Article  ADS  Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984), Chap. 2, § 8.

  20. K. Zhong et al., Sci. Chin. Technol. Sci. 60, 1801 (2017).

    Article  Google Scholar 

  21. T. I. Oh, Y. S. You, N. Jhajj, E. W. Rosenthal, H. M. Milchberg, and K. Y. Kim, Appl. Phys. Lett. 102, 201113 (2013).

    Article  ADS  Google Scholar 

  22. M. C. Hoffmann and J. A. Fulop, J. Phys. D: Appl. Phys. 44, 083001 (2011).

    Article  ADS  Google Scholar 

  23. D. Kuk, Y. J. Yoo, E. W. Rosenthal, N. Jhajj, N. M. Milchberg, and K. Y. Kim, Appl. Phys. Lett. 108, 121106 (2016).

    Article  ADS  Google Scholar 

  24. J. Hah, W. Jiang, Z.-H. He, J. A. Nees, B. Hou, A. J. R. Thomas, and K. Krushelnick, Opt. Express 25, 17271 (2017).

    Article  ADS  Google Scholar 

  25. A. V. Bogatskaya and A. M. Popov, JETP Lett. 97, 388 (2013).

    Article  ADS  Google Scholar 

  26. G. Bekefi, Y. L. Hirshfield, and S. C. Brown, Phys. Fluids 4, 173 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  27. F. V. Bunkin, A. E. Kazakov, and M. V. Fedorov, Sov. Phys. Usp. 15, 416 (1972).

    Article  ADS  Google Scholar 

  28. A. V. Rokhlenko, Sov. Phys. JETP 48, 663 (1978).

    ADS  Google Scholar 

  29. J. M. Warman, U. Sowada, and M. P. de Haas, Phys. Rev. A 31, 1974 (1985).

    Article  ADS  Google Scholar 

  30. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, Quant. Electron. 44, 1091 (2014).

    Article  ADS  Google Scholar 

  31. V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, Phys. Rev. Lett. 117, 035003 (2016).

    Article  ADS  Google Scholar 

  32. V. A. Andreeva, O. G. Kosareva, N. A. Panov, et al., Phys. Rev. Lett. 116, 063902 (2016).

    Article  ADS  Google Scholar 

  33. A. V. Bogatskaya and A. M. Popov, Laser Phys. 28, 115301 (2018).

    Article  ADS  Google Scholar 

  34. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, J. Phys. D 47, 185202 (2014).

    Article  ADS  Google Scholar 

  35. A. V. Phelps, JILA Inform. Center Rep. No. 26 (Univ. of Colorado, 1985).

  36. A. V. Phelps and L. C. Pitchford, Phys. Rev. A 31, 2932 (1985).

    Article  ADS  Google Scholar 

  37. V. L. Ginzburg and A. V. Gurevich, Sov. Phys. Usp. 3, 115 (1960).

    Article  ADS  Google Scholar 

  38. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, Laser Phys. Lett. 12, 035301 (2015).

    Article  ADS  Google Scholar 

  39. A. V. Bogatskaya and A. M. Popov, Laser Phys. Lett. 16, 066008 (2019).

    Article  ADS  Google Scholar 

  40. A. V. Bogatskaya, A. M. Popov, and I. V. Smetanin, J. Russ. Laser Res. 35, 437 (2015).

    Article  Google Scholar 

  41. A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, Laser Phys. 29, 086002 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bogatskaya or A. M. Popov.

Ethics declarations

This study was supported by the Russian Science Foundation (project no. 18-72-00125). Numerical calculations were performed on the Lomonosov supercomputer complex of the Moscow State University.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatskaya, A.V., Volkova, E.A. & Popov, A.M. Peculiarities of Propagation and Amplification of Ultrashort Terahertz Pulses in Strongly Nonequilibrium Plasma Channels Produced in Air by UV Femtosecond Laser Pulses during Multiquantum Ionization. J. Exp. Theor. Phys. 130, 649–659 (2020). https://doi.org/10.1134/S1063776120040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120040020

Navigation