Skip to main content
Log in

Spectra of Electronic Excitations in Graphene Near Coulomb Impurities

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the problem of the electron excitation spectrum in the presence of point-like and regularized Coulomb impurities in gapped graphene. To this end, we use the Dirac model and in the point-like case theory of self-adjoint extensions of symmetric operators. In the point-like case, we construct a family of self-adjoint Hamiltonians describing the excitations for any charge of an impurity. Spectra and (generalized) eigenfunctions for all such Hamiltonians are found. Then, we consider the spectral problem in the case of a regularized Coulomb potential of impurities for a special regularization. We study exact equations for charges of impurities that may generate bound states with energy that coincides with the upper boundary of the negative branch of the continuous spectrum (supercritical charges) and calculate these charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Note also that the standard QED vacuum in (3+1) dimensions becomes unstable due to the Coulomb attraction between electron and positron above a critical value of the fine-structure constant [2, 3], αcr = π/8 or, with its genuine value of α = 1/137, but if an external magnetic field above 1042 G is imposed [3].

REFERENCES

  1. G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

    Article  ADS  Google Scholar 

  2. J. S. Goldstein, Phys. Rev. 91, 1516 (1953);

    Article  ADS  Google Scholar 

  3. P. I. Fomin, V. P. Gusynin, V. A. Miransky, et al., Riv. Nuovo Cim. 6, 5 (1983);

    Article  Google Scholar 

  4. N. Setŏ, Prog. Theor. Phys. Suppl. 95, 25 (1988).

    Article  ADS  Google Scholar 

  5. A. E. Shabad and V. V. Usov, Phys. Rev. Lett. 96, 180401 (2006);

    Article  ADS  Google Scholar 

  6. Phys. Rev. D 73, 125021 (2006).

  7. S. P. Gavrilov, D. M. Gitman, and N. Yokomizo, Phys. Rev. D 86, 125022 (2012).

    Article  ADS  Google Scholar 

  8. N. Vandecasteele, A. Barreiro, M. Lazzeri, et al., Phys. Rev. B 82, 045416 (2010).

    Article  ADS  Google Scholar 

  9. K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007).

    Article  ADS  Google Scholar 

  10. V. N. Kotov, B. Uchoa, V. M. Pereira, et al., Rev. Mod. Phys. 84, 1067 (2012).

    Article  ADS  Google Scholar 

  11. V. M. Pereira, V. N. Kotov, and A. C. Neto, Phys. Rev. B 78, 085101 (2008).

    Article  ADS  Google Scholar 

  12. W. Zhu, Z. Wang, Q. Shi, et al., Phys. Rev. B 79, 155430 (2009).

    Article  ADS  Google Scholar 

  13. E. V. Gorbar, V. P. Gusynin, and O. O. Sobol, Low Temp. Phys. 44, 371 (2018).

    Article  ADS  Google Scholar 

  14. O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Phys. Rev. B 80, 165429 (2009).

    Article  ADS  Google Scholar 

  15. B. L. Voronov, D. M. Gitman, and I. V. Tyutin, Theor. Math. Phys. 150, 34 (2007).

    Article  Google Scholar 

  16. D. M. Gitman, I. V. Tyutin, and B. L. Voronov, Selfadjoint Extensions in Quantum Mechanics: General Theory and Applications to Schrodinger and Dirac Equations with Singular Potentials (Birkauser, New York, 2012).

    Book  Google Scholar 

  17. D. M. Gitman, A. D. Levin, I. V. Tyutin, et al., Phys. Scr. 87, 038104 (2013).

    Article  ADS  Google Scholar 

  18. V. M. Kuleshov, V. D. Mur, N. B. Narozhny, et al., Phys. Usp. 58, 785 (2015).

    Article  ADS  Google Scholar 

  19. B. L. Voronov, D. M. Gitman, A. D. Levin, et al., Theor. Math. Phys. 187, 633 (2016).

    Article  Google Scholar 

  20. J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B 424, 595 (1994).

    Article  ADS  Google Scholar 

  21. T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).

    Article  ADS  Google Scholar 

  22. Graphene Nanoelectronics. Metrology, Synthesis Properties, and Applications, Ed. by H. Raza (Springer, New York, 2012).

    Google Scholar 

  23. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Pitman, Boston, 1981).

    MATH  Google Scholar 

  24. A. I. Akhiezer and V. B. Berestetskii, Elements of Quantum Electrodynamics (Israel Program Sci. Transl., London, 1962).

  25. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, San Diego, 2014).

    Google Scholar 

  26. A. Erdelyi, W. Magnus, F. Oberhettinger, et al., Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.

    MATH  Google Scholar 

  27. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, New York, 2012).

    Book  Google Scholar 

  28. Y. Wang, V. W. Brar, A. V. Shytov, et al., Nat. Phys. 8, 653 (2012).

    Article  Google Scholar 

  29. K. S. Gupta and S. Sen, Phys. Rev. B 78, 205429 (2008).

    Article  ADS  Google Scholar 

  30. V. R. Khalilov and K. E. Lee, Theor. Math. Phys. 169, 1683 (2011).

    Article  Google Scholar 

  31. V. S. Popov, Sov. J. Nuc. Phys. 12, 235 (1971);

    Google Scholar 

  32. Sov. Phys. JETP 60, 1228 (1971).

  33. Ya. B. Zel’dovich and V. S. Popov, Sov. Phys. Usp. 14, 673 (1972).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by Russian Science Foundation (Grant no. 19-12-00042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Breev, R. Ferreira, D. M. Gitman or B. L. Voronov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breev, A.I., Ferreira, R., Gitman, D.M. et al. Spectra of Electronic Excitations in Graphene Near Coulomb Impurities. J. Exp. Theor. Phys. 130, 711–736 (2020). https://doi.org/10.1134/S1063776120030127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030127

Navigation