Skip to main content
Log in

Lead position and lead-ring coupling effects on the spin-dependent transport properties in a two-dimensional network of quantum nanorings in the presence of Rashba spin–orbit interaction

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The effects of lead positions and lead-ring coupling regimes are investigated for spin-related transport through a two-dimensional network of quantum nanorings (2DNQRs) considering Rashba spin–orbit interaction (RSOI) and magnetic flux. A matrix representation of the transmission and reflection coefficients through a single ring connected to the arbitrary number of leads has been introduced. As a specific example of 2DNQRs, the conductance, spin polarization and system efficiency are obtained via a triangular network of quantum rings (TNQRs). TNQRs are completely opaque or transparent versus RSOI strength and wave vector (k) of the incident electron. The periodicity of these functions along the k axis depends on the lead positions and is independent of lead-ring coupling. Also, the symmetric geometry and strong lead-ring coupling regime significantly improve the performance of the system as a multipurpose spintronic device (i.e., a perfect spin filter, spin splitter, spin switching, Stern–Gerlach device and an electronic switching device).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kuan, W.H., Tang, C.S., Chang, C.H.: Spectral properties and magneto-optical excitations in semiconductor double rings under Rashba spin–orbit interaction. Phys. Rev. B 75, 155326 (2007)

    Article  Google Scholar 

  2. Hod, O., Baer, R., Rabani, E.: Magnetoresistance of nanoscale molecular devices based on Aharonov–Bohm interferometry. J. Phys. Condens. Matter 20, 383201 (2008)

    Article  Google Scholar 

  3. Aharonov, Y., Casher, A.: Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–323 (1984)

    Article  MathSciNet  Google Scholar 

  4. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–488 (1959)

    Article  MathSciNet  Google Scholar 

  5. Grbic, B., Leturcq, R., Ihn, T., Ensslin, K., Reuter, D., Wieck, A.D.: Aharonov–Bohm oscillations in p-type GaAs quantum rings. Phys. E 40, 1273 (2008)

    Article  Google Scholar 

  6. Faizabadi, E., Najafi, A.: Energy-dependent spin filtering by using Fano effect in open quantum rings. Solid State Commun. 150, 1404 (2010)

    Article  Google Scholar 

  7. Földi, P., Kalman, O., Benedict, M.G., Peeters, F.M.: Quantum rings as electron spin beam splitters. Phys. Rev. B 73, 155325 (2006)

    Article  Google Scholar 

  8. Zhai, L.X., An, Z.: Spin-dependent transport in four-terminal rings in the presence of the Rashba spin–orbit coupling. Phys. Lett. A 383, 2813–2820 (2019)

    Article  MathSciNet  Google Scholar 

  9. Földi, P., Molnar, B., Benedict, M.G., Peeters, F.M.: Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction. Phys. Rev. B 71, 033309 (2005)

    Article  Google Scholar 

  10. Shelykh, I., et al.: Interplay of h∕e and h∕2 e oscillations in gate-controlled Aharonov–Bohm rings. Phys. Rev. B 71, 113311 (2005)

    Article  Google Scholar 

  11. Hedin, E.R., Joe, Y.S.: Sensitive spin-polarization effects in an Aharonov–Bohm double quantum dot ring. J. Appl. Phys. 110, 026107 (2011)

    Article  Google Scholar 

  12. Liu, D.Y., Xia, J.B.: Spin polarization in one-dimensional ring with Rashba spin–orbit interaction. J. Appl. Phys. 115, 044313 (2014)

    Article  Google Scholar 

  13. Saeedi, S., Faizabadi, E.: Quantum rings as a perfect spin-splitter and spin-filter by using the Rashba effect. Eur. Phys. J. B 89, 70086 (2016)

    Article  Google Scholar 

  14. Tang, H.Z., Zhai, L.X., Liu, J.J.: Spin transport properties of polygonal quantum ring with Rashba spin–orbit coupling. J. Appl. Phys. 114, 023702 (2013)

    Article  Google Scholar 

  15. Zhai, L.X., Wang, Y., An, Z.: Effects of Zeeman splitting on spin transportation in a three-terminal Rashba ring under a weak magnetic field. AIP Adv. 8, 055120 (2018)

    Article  Google Scholar 

  16. Nitta, J., Meijer, F.E., Takayanagi, H.: Spin-interference device. Appl. Phys. Lett 75, 695–697 (1999)

    Article  Google Scholar 

  17. Meije, F.E., Morpurgo, A.F., Klapwijk, T.M.: One-dimensional ring in the presence of Rashba spin-orbit interaction: derivation of the correct Hamiltonian. Phys. Rev. B 66, 033107 (2002)

    Article  Google Scholar 

  18. Molnar, B., Peeters, F.M., Vasilopoulos, P.: Spin-dependent magnetotransport through a ring due to spin–orbit interaction. Phys. Rev. B 69, 155335 (2004)

    Article  Google Scholar 

  19. Shelykh, I.A., Galkin, N.G., Bagraev, N.T.: Quantum splitter controlled by Rasha spin–orbit coupling. Phys. Rev. B 72, 235316 (2005)

    Article  Google Scholar 

  20. Vasilopoulos, P., Kalman, O., Peeters, F.M., Benedict, G.: Aharonov–Bohm oscillations in a mesoscopic ring with asymmetric arm-dependent injection. Phys. Rev. B 75, 035304 (2007)

    Article  Google Scholar 

  21. Huang, G.Y., Dong, L.S.: Ballistic spin-dependent transport of Rashba rings with multi-leads. Ann. Phys. 326, 1107 (2011)

    Article  Google Scholar 

  22. Fallah, F., Esmaeilzadeh, M.: Spin transport in a quantum ring in the presence of Rashba spin–orbit interaction using the S-matrix method. J. Appl. Phys. 111, 043717 (2012)

    Article  Google Scholar 

  23. Naeimi, A.S., Eslami, L., Esmaeilzadeh, M.: A wide range of energy spin-filtering in a Rashba quantum ring using S-matrix method. J. Appl. Phys. 113, 044316 (2013)

    Article  Google Scholar 

  24. Dehghan, E., Khoshnoud, D.S., Naeimi, A.S.: Spin-polarized currents in a two-terminal double quantum ring driven by magnetic fields and Rashba spin–orbit interaction. Phys. E 100, 13869477 (2018)

    Article  Google Scholar 

  25. Dehghan, E., Khoshnoud, D.S., Naeimi, A.S.: NAND/AND/NOT logic gates response in series of mesoscopic quantum rings. Mod. Phys. Lett. B 33, 1950431 (2019)

    Article  MathSciNet  Google Scholar 

  26. Saeedi, S., Faizabadi, E.: The effects of lead–ring coupling and the external Rashba interaction on the effective spin polarization of a chain of quantum nano rings. J. Comput. Electron. 7, 1 (2020). https://doi.org/10.1007/s10825-020-01479-5

    Article  Google Scholar 

  27. Bergsten, T., Kobayashi, T., Sekine, Y., Nitta, J.: Experimental demonstration of the time reversal Aharonov–Casher effect. Phys. Rev. Lett. 97, 196803 (2006)

    Article  Google Scholar 

  28. Kálmán, O., Foldi, P., Benedict, M.G., Peeters, F.M.: Magnetoconductance of rectangular arrays of quantum rings. Phys. Rev. B 78, 125306 (2008)

    Article  Google Scholar 

  29. Foldi, P., Kálmán, O., Benedict, M.G., Peeters, F.M.: Networks of quantum nanorings: programmable spintronic devices. Nano Lett. 8, 2556–2558 (2008)

    Article  Google Scholar 

  30. Foldi, P., Kálmán, O., Peeters, F.M.: Stability of spintronic devices based on quantum ring networks. Phys. Rev. B 80, 125324 (2009)

    Article  Google Scholar 

  31. Wu, J., Wang, M., Holmes, K., Marega, J.E., Zhou, Z., Li, M., Mazur, Y.I., Salamo, G.J.: Laterally aligned quantum rings: from one-dimensional chains to two-dimensional arrays. Appl. Phys. Lett. 100, 203117 (2012)

    Article  Google Scholar 

  32. Faizabadi, E., Molavi, M.: Radius effect on the spintronic properties of a triangular network of quantum nanorings in the presence of Rashba spin–orbit interaction. Curr. Appl. Phys. 17, 207 (2017)

    Article  Google Scholar 

  33. Dehghan, E., Khoshnoud, D.S., Naeimi, A.S.: Logical spin-filtering in a triangular network of quantum nanorings with a Rashba spin–orbit interaction. Phys. B 529, 21 (2018)

    Article  Google Scholar 

  34. Griffith, J.S.: A free-electron theory of conjugated molecules. Part 1.—Polycyclic hydrocarbons. Trans. Faraday Soc. 49, 345 (1953)

    Article  Google Scholar 

  35. Datta, S.: Electronic Transport in Mesoscopic Systems, pp. 94–116. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  36. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Iran University of Science and Technology Grant No. 160/17902.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to preparing this paper.

Corresponding author

Correspondence to Edris Faizabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we calculate the details of \(M_{i}^{\sigma }\) matrix elements. Using Eqs. (3)–(7) in Sect. 2, it can be read;

$$\left( {\begin{array}{*{20}c} {r_{2i}^{1\sigma } } \\ {a_{1i}^{1;2\sigma } } \\ {a_{2i}^{3;1\sigma } } \\ \end{array} } \right) = S_{i}^{1} \left( {\begin{array}{*{20}c} {r_{1i}^{1\sigma } } \\ {\tau_{2i}^{1;2\sigma } (\gamma_{i}^{1;2} )a_{2i}^{1;2\sigma } } \\ {\tau_{1i}^{3;1\sigma } (\gamma_{i}^{3;1} )a_{1i}^{3;1\sigma } } \\ \end{array} } \right)$$
(23)
$$\left( {\begin{array}{*{20}c} {t_{2i}^{2\sigma } } \\ {a_{2i}^{1;2\sigma } } \\ {a_{1i}^{3;2\sigma } } \\ \end{array} } \right) = S_{i}^{2} \left( {\begin{array}{*{20}c} {t_{1i}^{2\sigma } } \\ {\tau_{1i}^{1;2\sigma } (\gamma_{i}^{1;2} )a_{1i}^{1;2\sigma } } \\ {\tau_{2i}^{3;1\sigma } (\gamma_{i}^{3;1} )a_{2i}^{3;1\sigma } } \\ \end{array} } \right)$$
(24)

and

$$\left( {\begin{array}{*{20}c} {t_{2i}^{3\sigma } } \\ {a_{2i}^{2;3\sigma } } \\ {a_{1i}^{1;3\sigma } } \\ \end{array} } \right) = S_{i}^{3} \left( {\begin{array}{*{20}c} {t_{1i}^{3\sigma } } \\ {\tau_{1i}^{2;3\sigma } (\gamma_{i}^{2;3} )a_{1i}^{2;3\sigma } } \\ {\tau_{2i}^{1;3\sigma } (\gamma_{i}^{1;3} )a_{2i}^{1;3\sigma } } \\ \end{array} } \right)$$
(25)

where

$$r_{2i}^{1\sigma } = c_{i} r_{1i}^{1\sigma } + \, \sqrt {\epsilon_{i} } \tau_{2i}^{1;2\sigma } (\gamma_{i}^{1;2} )a_{2i}^{1;2\sigma } + \, \sqrt {\epsilon_{i} } \tau_{1i}^{3;1\sigma } (\gamma_{i}^{3;1} )a_{1i}^{3;1\sigma }$$
(26)
$$a_{1i}^{1;2\sigma } = \sqrt {\epsilon_{i} } r_{1i}^{1\sigma } + a_{i} \tau_{2i}^{1;2\sigma } (\gamma_{i}^{1;2} )a_{2i}^{1;2\sigma } + b_{i} \tau_{1i}^{3;1\sigma } (\gamma_{i}^{3;1} )a_{1i}^{3;1\sigma }$$
(27)
$$a_{2i}^{3;1\sigma } = \sqrt {\epsilon_{i} } r_{1i}^{1\sigma } + b_{i} \tau_{2i}^{1;2\sigma } (\gamma_{i}^{1;2} )a_{2i}^{1;2\sigma } + a_{i} \tau_{1i}^{3;1\sigma } (\gamma_{i}^{3;1} )a_{1i}^{3;1\sigma }$$
(28)
$$t_{2i}^{2\sigma } = c_{i} t_{1i}^{2\sigma } + \, \sqrt {\varepsilon_{i} } \tau_{1i}^{1;2\sigma } (\gamma_{i}^{1;2} )a_{1i}^{1;2\sigma } + \, \sqrt {\varepsilon_{i} } \tau_{2i}^{3;2\sigma } (\gamma_{i}^{3;2} )a_{2i}^{3;2\sigma }$$
(29)
$$a_{2i}^{1;2\sigma } = \sqrt {\varepsilon_{i} } t_{1i}^{2\sigma } + a_{i} \tau_{1i}^{1;2\sigma } (\gamma_{i}^{1;2} )a_{1i}^{1;2\sigma } + b_{i} \tau_{2i}^{3;2\sigma } (\gamma_{i}^{3;2} )a_{2i}^{3;2\sigma }$$
(30)
$$a_{1i}^{3;2\sigma } = \sqrt {\varepsilon_{i} } t_{1i}^{2\sigma } + b_{i} \tau_{1i}^{1;2\sigma } (\gamma_{i}^{1;2} )a_{1i}^{1;2\sigma } + a_{i} \tau_{2i}^{3;2\sigma } (\gamma_{i}^{3;2} )a_{2i}^{3;2\sigma }$$
(31)
$$t_{2i}^{3\sigma } = c_{i} t_{1i}^{3\sigma } + \sqrt {\varepsilon_{i} } \tau_{1i}^{2;3\sigma } (\gamma_{i}^{2;3} )a_{1i}^{2;3\sigma } + \sqrt {\varepsilon_{i} } \tau_{2i}^{1;3\sigma } (\gamma_{i}^{1;3} )a_{2i}^{1;3\sigma }$$
(32)
$$a_{2i}^{2;3\sigma } = \sqrt {\varepsilon_{i} } t_{1i}^{3\sigma } + a_{i} \tau_{1i}^{2;3\sigma } (\gamma_{i}^{2;3} )a_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;3\sigma } (\gamma_{i}^{1;3} )a_{2i}^{1;3\sigma }$$
(33)
$$a_{1i}^{1;3\sigma } = \sqrt {\varepsilon_{i} } t_{1i}^{3\sigma } + b_{i} \tau_{1i}^{2;3\sigma } (\gamma_{i}^{2;3} )a_{1i}^{2;3\sigma } + a_{i} \tau_{2i}^{1;3\sigma } (\gamma_{i}^{1;3} )a_{2i}^{1;3\sigma }$$
(34)

One can write the above equations in matrix form as;

$$A_{i}^{\sigma } \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {r_{2i}^{1\sigma } } \\ {t_{2i}^{2\sigma } } \\ {t_{2i}^{3\sigma } } \\ {a_{1i}^{1;2\sigma } } \\ \end{array} } \\ {a_{2i}^{1;3\sigma } } \\ {a_{2i}^{1;2\sigma } } \\ {\begin{array}{*{20}c} {a_{1i}^{2;3\sigma } } \\ {\begin{array}{*{20}c} {a_{2i}^{2;3\sigma } } \\ {a_{1i}^{1;3\sigma } } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {c_{i} r_{1i}^{1\sigma } } \\ {c_{i} t_{1i}^{2\sigma } } \\ {c_{i} t_{1i}^{3\sigma } } \\ {\sqrt {\varepsilon_{i} } r_{1i}^{1\sigma } } \\ \end{array} } \\ {\sqrt {\varepsilon_{i} } r_{1i}^{1\sigma } } \\ {\sqrt {\varepsilon_{i} } t_{1i}^{2\sigma } } \\ {\begin{array}{*{20}c} {\sqrt {\varepsilon_{i} } t_{1i}^{2\sigma } } \\ {\begin{array}{*{20}c} {\sqrt {\varepsilon_{i} } t_{1i}^{3\sigma } } \\ {\sqrt {\varepsilon_{i} } t_{1i}^{3\sigma } } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right)$$
(35)

where

$$A_{i}^{\sigma } = \left( {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & { - \sqrt {\varepsilon_{i} } \tau_{2i}^{1;2\sigma } } & 0 & 0 & { - \sqrt {\varepsilon_{i} } \tau_{1i}^{3;1\sigma } } \\ 0 & 1 & 0 & { - \sqrt {\varepsilon_{i} } \tau_{1i}^{1;2\sigma } } & 0 & 0 & 0 & { - \sqrt {\varepsilon_{i} } \tau_{2i}^{2;3\sigma } } & 0 \\ 0 & 0 & 1 & 0 & { - \sqrt {\varepsilon_{i} } \tau_{2i}^{3;1\sigma } } & 0 & { - \sqrt {\varepsilon_{i} } \tau_{1i}^{2;3\sigma } } & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & { - a_{i} \tau_{2i}^{1;2\sigma } } & 0 & 0 & { - b_{i} \tau_{1i}^{3;1\sigma } } \\ 0 & 0 & 0 & 0 & 1 & { - b_{i} \tau_{2i}^{1;2\sigma } } & 0 & 0 & { - a_{i} \tau_{1i}^{3;1\sigma } } \\ 0 & 0 & 0 & { - a_{i} \tau_{1i}^{1;2\sigma } } & 0 & 1 & 0 & { - b_{i} \tau_{2i}^{2;3\sigma } } & 0 \\ 0 & 0 & 0 & { - b_{i} \tau_{1i}^{1;2\sigma } } & 0 & 0 & 1 & { - a_{i} \tau_{2i}^{2;3\sigma } } & 0 \\ 0 & 0 & 0 & 0 & { - b_{i} \tau_{2i}^{3;1\sigma } } & 0 & { - a_{i} \tau_{1i}^{2;3\sigma } } & 1 & 0 \\ 0 & 0 & 0 & 0 & { - a_{i} \tau_{2i}^{3;1\sigma } } & 0 & { - b_{i} \tau_{1i}^{2;3\sigma } } & 0 & 1 \\ \end{array} } \right)$$
(36)

To calculate the elements of the matrix \(M_{i}^{\sigma }\) which relates the coefficients \(r_{1i}^{1\sigma } , \, r_{2i}^{1\sigma } , \, t_{1i}^{2\sigma } , \, t_{2i}^{2\sigma } , \, t_{1i}^{3\sigma }\) and \(t_{2i}^{3\sigma }\) to each other, we require to find the three first rows of the inverse of the matrix \(A_{i}^{\sigma }\). For the convenience of calculations, we first define some auxiliary variables, namely \(f_{1i}^{\sigma }\), \(f_{2i}^{\sigma }\), \(f_{3i}^{\sigma }\), \(f_{4i}^{\sigma }\), \(f_{5i}^{\sigma }\), \(f_{6i}^{\sigma }\), \(f_{7i}^{\sigma }\), \(f_{8i}^{\sigma }\), \(f_{9i}^{\sigma }\), \(f_{10i}^{\sigma }\), \(f_{11i}^{\sigma }\), \(f_{12i}^{\sigma }\), \(f_{13i}^{\sigma }\), \(f_{14i}^{\sigma }\), \(f_{15i}^{\sigma }\), \(f_{16i}^{\sigma }\), \(f_{17i}^{\sigma }\), \(f_{18i}^{\sigma }\), \(f_{19i}^{\sigma }\), \(f_{20i}^{\sigma }\), \(f_{21i}^{\sigma }\), \(f_{22i}^{\sigma }\), \(f_{23i}^{\sigma }\), \(f_{24i}^{\sigma }\), \(f_{25i}^{\sigma }\), \(f_{26i}^{\sigma }\), \(f_{27i}^{\sigma }\), \(f_{28i}^{\sigma }\), \(f_{29i}^{\sigma }\) and \(f_{30i}^{\sigma }\).

$$f_{1i}^{\sigma } = 1 - \tau_{2i}^{3;2\sigma } (a_{i}^{2} \tau_{1i}^{3;2\sigma } + b_{i}^{3} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )$$
(37)
$$f_{2i}^{\sigma } = - \sqrt {\varepsilon_{i} } \tau_{2i}^{2;3\sigma } (a_{i} \tau_{1i}^{2;3\sigma } - b_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )$$
(38)
$$f_{3i}^{\sigma } = - a_{i} b_{i} \tau_{2i}^{3;2\sigma } (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )$$
(39)
$$f_{4i}^{\sigma } = f_{3i}^{\sigma } a_{i} b_{i} \tau_{1i}^{1;3\sigma } \tau_{2i}^{1;3\sigma } + f_{1i}^{\sigma } (1 - a_{i}^{2} \tau_{1i}^{1;3\sigma } \tau_{2i}^{1;3\sigma } )$$
(40)
$$f_{5i}^{\sigma } = - \sqrt {\varepsilon_{i} } a_{i} b_{i} \tau_{1i}^{1;3\sigma } \tau_{2i}^{1;3\sigma } \tau_{2i}^{2;3\sigma } )$$
(41)
$$f_{6i}^{\sigma } = a_{i} \tau_{1i}^{1;3\sigma } \tau_{2i}^{1;3\sigma } (b_{i} f_{2i}^{\sigma } - \sqrt {\varepsilon_{i} } f_{1i}^{\sigma } )$$
(42)
$$f_{7i}^{\sigma } = - \sqrt {\varepsilon_{i} } \tau_{1i}^{1;3\sigma } (f_{1i}^{\sigma } + a_{i} b_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } \tau_{2i}^{1;3\sigma } )$$
(43)
$$f_{8i}^{\sigma } = - b_{i} \tau_{1i}^{1;3\sigma } (f_{1i}^{\sigma } + b_{i} a_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } \tau_{2i}^{1;3\sigma } )$$
(44)
$$\begin{aligned} f_{9i}^{\sigma } = & - f_{8i}^{\sigma } b_{i} \tau_{1i}^{1;2\sigma } (f_{3i}^{\sigma } a_{i} (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } ) + f_{1i}^{\sigma } (b_{i} \tau_{1i}^{2;3\sigma } + a_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )) \\ & - f_{4i}^{\sigma } (f_{1i}^{\sigma } ( - 1 + a_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } ) + a_{i}^{2} b_{i}^{2} \tau_{1i}^{1;2\sigma } \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )) \\ \end{aligned}$$
(45)
$$\begin{aligned} f_{10i}^{\sigma } = & - f_{5i}^{\sigma } b_{i} \tau_{1i}^{1;2\sigma } (a_{i} f_{3i}^{\sigma } (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } ) - f_{1i}^{\sigma } (b_{i} \tau_{1i}^{2;3\sigma } + a_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )) \\ & - \sqrt {\varepsilon_{i} } \tau_{1i}^{1;2\sigma } f_{4i}^{\sigma } (f_{1i}^{\sigma } + a_{i} b_{i} \tau_{2i}^{2;3\sigma } (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )) \\ \end{aligned}$$
(46)
$$\begin{aligned} f_{11i}^{\sigma } = & - b_{i} \tau_{1i}^{1;2\sigma } f_{6i}^{\sigma } (a_{i} f_{3i}^{\sigma } (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } ) - f_{1i}^{\sigma } (b_{i} \tau_{1i}^{2;3\sigma } + a_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )) \\ & - b_{i} \tau_{1i}^{1;2\sigma } f_{4i}^{\sigma } (\sqrt {\varepsilon_{i} } f_{1i}^{\sigma } (\tau_{1i}^{2;3\sigma } + a_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } ) - a_{i} f_{2i}^{\sigma } (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )) \\ \end{aligned}$$
(47)
$$\begin{aligned} f_{12i}^{\sigma } = & - b_{i} \tau_{1i}^{1;2\sigma } f_{7i}^{\sigma } (a_{i} f_{4i}^{\sigma } (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } ) - f_{1i}^{\sigma } (b_{i} \tau_{1i}^{2;3\sigma } + a_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )) \\ & - \sqrt {\varepsilon_{i} } a_{i} \tau_{1i}^{1;2\sigma } \tau_{2i}^{1;2\sigma } f_{4i}^{\sigma } (f_{1i}^{\sigma } + b_{i}^{2} \tau_{2i}^{2;3\sigma } (\tau_{1i}^{2;3\sigma } + b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } )) \\ \end{aligned}$$
(48)
$$\begin{aligned} f_{13i}^{\sigma } = & \frac{{b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } (f_{10i}^{\sigma } f_{8i}^{\sigma } - f_{5i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - a_{i} \tau_{2i}^{1;2\sigma } f_{10i}^{\sigma } f_{4i}^{\sigma } (f_{1i}^{\sigma } + b_{i}^{3} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } \tau_{2i}^{1;3\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }} \\ & + \frac{{\sqrt {\varepsilon_{i} } b_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } \tau_{2i}^{1;3\sigma } f_{9i}^{\sigma } f_{4i}^{\sigma } }}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }} \\ \end{aligned}$$
(49)
$$\begin{aligned} f_{14i}^{\sigma } = & \frac{{b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } (f_{11i}^{\sigma } f_{8i}^{\sigma } - f_{6i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - a_{i} \tau_{2i}^{1;2\sigma } f_{11i}^{\sigma } f_{4i}^{\sigma } (f_{1i}^{\sigma } + b_{i}^{3} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } \tau_{2i}^{1;3\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }} \\ & + \frac{{b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } (\sqrt {\varepsilon_{i} } f_{1i}^{\sigma } - b_{i} f_{2i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }} \\ \end{aligned}$$
(50)
$$f_{15i}^{\sigma } = \frac{{b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{1;3\sigma } (f_{12i}^{\sigma } f_{8i}^{\sigma } - f_{7i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - \tau_{2i}^{1;2\sigma } f_{4i}^{\sigma } (f_{1i}^{\sigma } + b_{i}^{3} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } \tau_{2i}^{1;3\sigma } )(a_{i} f_{12i}^{\sigma } - \sqrt {\varepsilon_{i} } f_{9i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(51)
$$f_{16i}^{\sigma } = \frac{{\tau_{1i}^{2;3\sigma } (f_{10i}^{\sigma } f_{8i}^{\sigma } - f_{5i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - a_{i} \tau_{1i}^{2;3\sigma } \tau_{2i}^{2;3\sigma } f_{4i}^{\sigma } (a_{i} b_{i} \tau_{2i}^{1;2\sigma } f_{10i}^{\sigma } - \sqrt {\varepsilon_{i} } f_{9i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(52)
$$f_{17i}^{\sigma } = \frac{{\tau_{1i}^{2;3\sigma } (f_{11i}^{\sigma } f_{8i}^{\sigma } - f_{6i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - \tau_{1i}^{2;3\sigma } f_{4i}^{\sigma } (a_{i}^{2} b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } f_{11i}^{\sigma } + f_{9i}^{\sigma } (\sqrt {\varepsilon_{i} } f_{1i}^{\sigma } - a_{i} f_{2i}^{\sigma } ))}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(53)
$$f_{18i}^{\sigma } = \frac{{\tau_{1i}^{2;3\sigma } (f_{12i}^{\sigma } f_{8i}^{\sigma } - f_{7i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - a_{i} b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } \tau_{1i}^{2;3\sigma } f_{4i}^{\sigma } (a_{i} f_{12i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{9i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(54)
$$f_{19i}^{\sigma } = \frac{{\tau_{2i}^{1;3\sigma } (f_{10i}^{\sigma } f_{8i}^{\sigma } - f_{5i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - b_{i} \tau_{1i}^{2;3\sigma } \tau_{2i}^{2;3\sigma } f_{4i}^{\sigma } (a_{i} b_{i} \tau_{2i}^{1;2\sigma } f_{10i}^{\sigma } - \sqrt {\varepsilon_{i} } f_{9i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(55)
$$f_{20i}^{\sigma } = \frac{{\tau_{2i}^{1;3\sigma } (f_{11i}^{\sigma } f_{8i}^{\sigma } - f_{6i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - \tau_{2i}^{1;3\sigma } f_{4i}^{\sigma } (b_{i}^{2} a_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } f_{11i}^{\sigma } + f_{9i}^{\sigma } (\sqrt {\varepsilon_{i} } f_{1i}^{\sigma } - b_{i} f_{2i}^{\sigma } ))}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(56)
$$f_{21i}^{\sigma } = \frac{{\tau_{2i}^{1;3\sigma } (f_{12i}^{\sigma } f_{8i}^{\sigma } - f_{7i}^{\sigma } f_{9i}^{\sigma } )(a_{i} f_{1i}^{\sigma } - b_{i} f_{3i}^{\sigma } ) - b_{i}^{2} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } \tau_{2i}^{1;3\sigma } f_{4i}^{\sigma } (a_{i} f_{12i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{9i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(57)
$$f_{22i}^{\sigma } = \frac{{ - f_{10i}^{\sigma } (f_{8i}^{\sigma } f_{3i}^{\sigma } + a_{i} b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } f_{4i}^{\sigma } ) + f_{9i}^{\sigma } (f_{3i}^{\sigma } f_{5i}^{\sigma } + \sqrt {\varepsilon_{i} } \tau_{2i}^{2;3\sigma } f_{4i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(58)
$$f_{23i}^{\sigma } = \frac{{ - f_{11i}^{\sigma } (f_{8i}^{\sigma } f_{3i}^{\sigma } + a_{i} b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } f_{4i}^{\sigma } ) + f_{9i}^{\sigma } (f_{3i}^{\sigma } f_{6i}^{\sigma } - f_{2i}^{\sigma } f_{4i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(59)
$$f_{24i}^{\sigma } = \frac{{ - f_{12i}^{\sigma } (f_{8i}^{\sigma } f_{3i}^{\sigma } + a_{i} b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } f_{4i}^{\sigma } ) + f_{9i}^{\sigma } (f_{3i}^{\sigma } f_{7i}^{\sigma } + \sqrt {\varepsilon_{i} } b_{i} \tau_{2i}^{1;2\sigma } \tau_{2i}^{2;3\sigma } f_{4i}^{\sigma } )}}{{f_{1i}^{\sigma } f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(60)
$$f_{25i}^{\sigma } = \frac{{f_{10i}^{\sigma } f_{8i}^{\sigma } - f_{9i}^{\sigma } f_{5i}^{\sigma } }}{{f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(61)
$$f_{26i}^{\sigma } = \frac{{f_{11i}^{\sigma } f_{8i}^{\sigma } - f_{9i}^{\sigma } f_{7i}^{\sigma } }}{{f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(62)
$$f_{27i}^{\sigma } = \frac{{f_{12i}^{\sigma } f_{8i}^{\sigma } - f_{9i}^{\sigma } f_{7i}^{\sigma } }}{{f_{4i}^{\sigma } f_{9i}^{\sigma } }}$$
(63)
$$f_{28i}^{\sigma } = \frac{{ - f_{10i}^{\sigma } }}{{f_{9i}^{\sigma } }}$$
(64)
$$f_{29i}^{\sigma } = \frac{{ - f_{11i}^{\sigma } }}{{f_{9i}^{\sigma } }}$$
(65)
$$f_{30i}^{\sigma } = \frac{{ - f_{12i}^{\sigma } }}{{f_{9i}^{\sigma } }}$$
(66)

Finally, using these auxiliary variables, the elements of the \(3 \times 3\) matrix \(M_{i}^{\sigma }\) can be obtained as:

$$M_{11i}^{\sigma } = c_{i} + \sqrt {\varepsilon_{i} } f_{13i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{16i}^{\sigma } ,$$
(67)
$$M_{12i}^{\sigma } = \sqrt {\varepsilon_{i} } f_{22i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{25i}^{\sigma } ,$$
(68)
$$M_{13i}^{\sigma } = \sqrt {\varepsilon_{i} } f_{19i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{28i}^{\sigma } ,$$
(69)
$$M_{21i}^{\sigma } = \sqrt {\varepsilon_{i} } f_{14i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{17i}^{\sigma } ,$$
(70)
$$M_{22i}^{\sigma } = c_{i} + \sqrt {\varepsilon_{i} } f_{23i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{26i}^{\sigma } ,$$
(71)
$$M_{23i}^{\sigma } = \sqrt {\varepsilon_{i} } f_{20i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{29i}^{\sigma } ,$$
(72)
$$M_{31i}^{\sigma } = \sqrt {\varepsilon_{i} } f_{15i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{18i}^{\sigma } ,$$
(73)
$$M_{32i}^{\sigma } = \sqrt {\varepsilon_{i} } f_{24i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{27i}^{\sigma } ,$$
(74)
$$M_{33i}^{\sigma } = c_{i} + \sqrt {\varepsilon_{i} } f_{21i}^{\sigma } + \sqrt {\varepsilon_{i} } f_{30i}^{\sigma } ,$$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedi, S., Faizabadi, E. Lead position and lead-ring coupling effects on the spin-dependent transport properties in a two-dimensional network of quantum nanorings in the presence of Rashba spin–orbit interaction. J Comput Electron 19, 1014–1030 (2020). https://doi.org/10.1007/s10825-020-01506-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01506-5

Keywords

Navigation