Skip to main content
Log in

The impact of point defects on the optical and electrical properties of cubic ZrO2

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

First-principles calculations based on the full-potential linear augmented plane wave approach are applied herein to investigate the electronic, optical, and electrical properties of intrinsic point defects in cubic ZrO2. The exchange–correlation potential is treated using the recent modified Becke–Johnson potential (TB-mBJ) proposed by Tran and Blaha in addition to the generalized gradient approximation (GGA), which successfully corrects the bandgap problem found in a wide range of materials when using the GGA alone. The energy of formation of the point defects is calculated after the optimization of atomic positions. The results indicate that the ZrO antisite has the lowest energy of formation and could be the acceptor defect responsible for the p-type conductivity of undoped cubic ZrO2. Besides, the TB-mBJ method is used to calculate various optical coefficients, including the complex refractive index and the absorption and transmittance coefficients. Furthermore, the electrical properties of each type of point defect are investigated by applying Boltzmann transport theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steiner, S.A., Baumann, T.F., Bayer, B.C., Blume, R., Worsley, M.A., Moberly-Chan, W.J., Shaw, E.L., Schlogl, R., Hart, A.J., Hofmann, S., Wardle, B.L.: Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J. Am. Chem. Soc. 131, 12144 (2009)

    Article  Google Scholar 

  2. Ding, J., Liu, J., Guo, W.M.: Fabrication and study on Ni1−xFexO-YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells. J. Alloys Compd. 480, 286 (2009)

    Article  Google Scholar 

  3. Liu, M., He, C., Wang, J., Wang, W., Wang, Z.: Investigation of (CeO2)x(Sc2O3)(0.11−x)(ZrO2)0.89 (x = 0.01–0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell. J. Alloys Compd. 502, 319 (2010)

    Article  Google Scholar 

  4. Lamas, D.G., Bianchetti, M.F., Cabezas, M.D., de Reca, N.E.W.: Nanostructured ceramic materials: applications in gas sensors and solid-oxide fuel cells. J. Alloys Compd. 495, 548 (2010)

    Article  Google Scholar 

  5. Shuk, P., Bailey, E., Zosel, J., Guth, U.: New advanced in situ carbon monoxide sensor for the process application. Ionics 15, 131 (2009)

    Article  Google Scholar 

  6. Song, X., Xie, M., Hao, X., Jia, F., An, S.: Structure and thermal conductivity of Zr1−xGdxO2−x/2 solid solutions. J. Alloys Compd. 497, L5 (2010)

    Article  Google Scholar 

  7. Namavar, F., Wang, G., Cheung, C.L., Sabirianov, R.F., Zeng, X.C., Mei, W.N., Bai, J., Brewer, J.R., Haider, H., Garvin, K.L.: Thermal stability of nanostructurally stabilized zirconium oxide. Nanotechnology 18, 415702 (2007)

    Article  Google Scholar 

  8. Garnweitner, G., Goldenberg, L.M., Sakhno, O.V., Antonietti, M., Niederberger, M., Stumpe, J.: Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small 3, 1626 (2007)

    Article  Google Scholar 

  9. Gateshki, M., Petkov, V., Williams, G., Pradhan, S.K., Ren, Y.: Atomic-scale structure of nanocrystalline ZrO2 prepared by high-energy ball milling. Phys. Rev. B 71, 224107 (2005)

    Article  Google Scholar 

  10. Boujnah, M., Labrim, H., Zaari, H., Benyoussef, A., El Kenz, A., Mounkachi, O.: Understanding ferromagnetism and optical absorption in 3d transition metal-doped cubic ZrO2 with the modified Becke–Johnson exchange-correlation functional. J. Appl. Phys. 115, 123909 (2014)

    Article  Google Scholar 

  11. Lovisa, L.X., Andrés, J., Gracia, L., Li, M.S., Paskocimas, C.A., Bomio, M.R.D., Araujo, V.D., Longo, E., Motta, F.V.: Photoluminescent properties of ZrO2: Tm3+, Tb3+, Eu3+ powders—a combined experimental and theoretical study. J. Alloys Compd. 695, 3094 (2017)

    Article  Google Scholar 

  12. Tabatabaeian, M.R., Rahmanifard, R., Jalili, Y.S.: The study of phase stability and thermal shock resistance of a scandia-ceria stabilized zirconia as a new TBC material. Surf. Coat. Technol. 374, 752 (2019)

    Article  Google Scholar 

  13. Bogicevic, A., Wolverton, C.: Nature and strength of defect interactions in cubic stabilized zirconia. Phys. Rev. B 67, 024106 (2003)

    Article  Google Scholar 

  14. Tuan, W.H., Chen, J.R., Ho, C.J.: Critical zirconia amount to enhance the strength of alumina. Ceram. Int. 34, 2129–2133 (2008)

    Article  Google Scholar 

  15. Somiya, S., Yamamato, N., Yanagina, H.: Science and Technology of Zirconia (III), vol. 24A and 24B. American Ceramic Society, Westerville (1988)

    Google Scholar 

  16. Sathyaseelan, B., Manikandan, E., Baskaran, I., Senthilnathan, K., Sivakumar, K., Moodley, M.K., Ladchumananandasivam, R., Maaza, M.: Studies on structural and optical properties of ZrO2 nanopowder for opto-electronic applications. J. Alloys Compd. 694, 556 (2017)

    Article  Google Scholar 

  17. Boujnah, M., Labrim, H., Allam, K., Belhaj, A., Benyoussef, A., El Kenz, A., Belhorma, B., El Bouari, A.: Magnetic and electronic properties of point defects in ZrO2. J. Supercond. Nov. Magn. 26, 2429 (2013)

    Article  Google Scholar 

  18. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k, Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Vienna, Austria (2001). See also http://www.wien2k.at

  19. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  20. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  21. Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)

    Article  Google Scholar 

  22. Becke, A.D., Roussel, M.R.: Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 39, 3761 (1989)

    Article  Google Scholar 

  23. Celayaa, C.A., Muñiz, J., Sansores, L.E.: Theoretical study of graphyne-γ doped with N atoms: the quest for novel catalytic materials. Fuel 235, 384–395 (2019)

    Article  Google Scholar 

  24. Crocombette, J.P.: Theoretical study of point defects in crystalline zircon. Phys. Chem. Miner. 27, 138 (1999)

    Article  Google Scholar 

  25. Stoneham, A.M., Szymanski, M.A., Shluger, A.L.: Atomic and ionic processes of silicon oxidation. Phys. Rev. B 63, R241304 (2001)

    Article  Google Scholar 

  26. Szymanski, M.A., Shluger, A.L., Stoneham, A.M.: Role of disorder in incorporation energies of oxygen atoms in amorphous silica. Phys. Rev. B 63, 224207 (2001)

    Article  Google Scholar 

  27. Ramo, D.M., Sushko, P.V., Gavartin, J.L., Shluger, A.L.: Oxygen vacancies in cubic ZrO2 nanocrystals studied by an ab initio embedded cluster method. Phys. Rev. B 78, 235432 (2008)

    Article  Google Scholar 

  28. Foster, A.S., Sulimov, V.B., Gejo, F.L., Shluger, A.L., Nieminen, R.M.: Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B 64, 224108 (2001)

    Article  Google Scholar 

  29. Joy, K., Maneeshya, L.V., Thomas, J.K., Thomas, P.V.: Effect of sol concentration on the structural, morphological, optical and photoluminescence properties of zirconia thin films. Thin Solid Films 520, 2683–2688 (2012)

    Article  Google Scholar 

  30. Sinhamahapatra, A., Jeon, J.P., Kang, J., Han, B., Yu, J.S.: Oxygen-deficient zirconia (ZrO2−x): a new material for solar light absorption. Sci. Rep. 6, 27218 (2016)

    Article  Google Scholar 

  31. Manna, S., Ghoshal, T., Deb, A.K., De, S.K.: Structural stability and optical properties of nanocrystalline zirconia. J. Appl. Cryst. 43, 780 (2010)

    Article  Google Scholar 

  32. Maheswari, A.U., Kumar, S.S., Sivakumar, M.: Influence of alkaline mineralizer on structural and optical properties of ZrO2 nanoparticles. J. Nanosci. Nanotechnol. 13, 4409 (2013)

    Article  Google Scholar 

  33. Wooten, F.: Optical Properties of Solids. Academic, New York (1972)

    Google Scholar 

  34. Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)

    Article  Google Scholar 

  35. Lee, J.H., Yoon, S.M., Kim, B.-K., Kim, J., Lee, H.W., Song, H.S.: Electrical conductivity and defect structure of yttria-doped ceria-stabilized zirconia. Solid State Ionics 144, 175 (2001)

    Article  Google Scholar 

  36. Majedi, A., Abbasi, A., Davar, F.: Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties. J. Sol-Gel Sci. Technol. 77, 542 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. P. Blaha at Wien Technical University for the Wien2k code. M. Boujnah is grateful to DGAPA-UNAM for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Boujnah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boujnah, M., Ennaceri, H., El Kenz, A. et al. The impact of point defects on the optical and electrical properties of cubic ZrO2. J Comput Electron 19, 940–946 (2020). https://doi.org/10.1007/s10825-020-01520-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01520-7

Keywords

Navigation