Skip to main content
Log in

Response Surface Methodology for Photo Degradation of Methyl Orange Using Magnetic Nanocomposites Containing Zinc Oxide

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Magnetic graphen oxide (Fe3O4-GO) is applied for preparation of Fe3O4-GO-ZnO (MGOZ) nanocomposite as photocatalyst. The photocatalysts are characterized by FTIR and UV spectrophotometer. FTIR results confirm the presence of Zn–O bonds and Fe–O bonds that are attributed to the ZnO and Fe3O4, respectively. The removal efficiency of methyl orange (MO) is compared using MGOZ and Fe3O4-ZnO at different irradiation time (ranging from 5 to 40 min) and pH (in the range of 3 to 11). The experimental results show that the removal efficiency of MO using MGOZ and Fe3O4-ZnO enhanced with respect to the irradiation time. Meanwhile the lowest and highest removal efficiency are obtained at pH = 7 and pH = 3, respectively. The comparison between removal efficiency of MO using MGOZ and Fe3O4-ZnO reveals that GO has a significant effect on the photocatalytic activity. Meanwhile, the removal efficiency of MO using MGOZ is higher than that of Fe3O4-ZnO. The statistical analysis of results using design of experiments (DOE) and Duncan’s multiple range test at α = 0.05 confirm that irradiation time, pH and their interactions have a significant effect on the removal efficiency of MO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Gan, H. Li, L. Chen, L. Xu, J. Liu, A. Geng, et al. (2018). Colloid Polym. Sci. 296, (3), 607–615.

    Article  CAS  Google Scholar 

  2. Y.-C. Chen, K.-I. Katsumata, Y.-H. Chiu, K. Okada, N. Matsushita, and Y.-J. Hsu (2015). Appl. Catal. A General. 490, 1–9.

    Article  CAS  Google Scholar 

  3. Y.-C. Pu, H.-Y. Chou, W.-S. Kuo, K.-H. Wei, and Y.-J. Hsu (2017). Appl. Catal. B Environ. 204, 21–32.

    Article  CAS  Google Scholar 

  4. Y.-S. Chang, P.-Y. Hsieh, T.-F. M. Chang, C.-Y. Chen, M. Sone, and Y.-J. Hsu (2020). J. Mater. Chem. A. https://doi.org/10.1039/d0ta02359k.

    Article  Google Scholar 

  5. R. Kumar, R. K. Singh, D. P. Singh, R. Savu, and S. A. Moshkalev (2016). Mater. Design. 111, 291–300.

    Article  CAS  Google Scholar 

  6. K.-A. Tsai and Y.-J. Hsu (2015). Appl. Catal. B Environ. 164, 271–278.

    Article  CAS  Google Scholar 

  7. K.-A. Tsai, P.-Y. Hsieh, T.-H. Lai, C.-W. Tsao, H. Pan, Y.-G. Lin, et al. (2020). ACS Appl. Energy Mater. 3, 5322–5332.

    Article  CAS  Google Scholar 

  8. S. Abbasi (2016). Iran. J. Health Environ. 9, (3), 433–442.

    Google Scholar 

  9. S. Abbasi (2018). Mater. Res. Express. 5, 066302.

    Article  CAS  Google Scholar 

  10. S. Abbasi (2020). J. Inorgan. Organometal. Polym. Mater. 30, 1924–1934.

    Article  CAS  Google Scholar 

  11. S. Abbasi, F. Ahmadpoor, M. Imani, and M.-S. Ekrami-Kakhki (2020). Int. J. Environ. Anal. Chem. 100, (2), 225–240.

    Article  CAS  Google Scholar 

  12. S. Abbasi, M.-S. Ekrami-Kakhki, and M. Tahari (2017). J. Mater. Sci. Mater. Electron. 28, (20), 15306–15312.

    Article  CAS  Google Scholar 

  13. S. Abbasi and M. Hasanpour (2017). J. Mater. Sci. Mater. Electron. 28, (2), 1307–1314.

    Article  CAS  Google Scholar 

  14. Y.-H. Chiu, T.-F. M. Chang, C.-Y. Chen, M. Sone, and Y.-J. Hsu (2019). Catalysts 9, 430.

    Article  CAS  Google Scholar 

  15. N. Roozban, S. Abbasi, and M. Ghazizadeh (2017). J. Mater. Sci. Mater. Electron. 28, (8), 6047–6055. https://doi.org/10.1007/s10854-016-6280-9.

    Article  CAS  Google Scholar 

  16. S. Abbasi, M. Hasanpour, and M. S. E. Kakhki (2017). J. Mater. Sci. Mater. Electron. 28, (13), 9900–9910. https://doi.org/10.1007/s10854-017-6745-5.

    Article  CAS  Google Scholar 

  17. Y.-H. Chiu, T.-H. Lai, M.-Y. Kuo, P.-Y. Hsieh, and Y.-J. Hsu (2019). Appl. Mater. 7, 080901.

    Article  CAS  Google Scholar 

  18. A. Ghaderi, S. Abbasi, and F. Farahbod (2015). Iran. J. Chem. Eng. 12, (3), 96–105.

    Google Scholar 

  19. A. Ghaderi, S. Abbasi, and F. Farahbod (2018). Mater. Res. Express. 5, 065908.

    Article  CAS  Google Scholar 

  20. N. Roozban, S. Abbasi, and M. Ghazizadeh (2017). J. Mater. Sci. Mater. Electron. 28, (10), 7343–7352. https://doi.org/10.1007/s10854-017-6421-9.

    Article  CAS  Google Scholar 

  21. W. W. Wang, Y. J. Zhu, and L. X. Yang (2007). Adv. Funct. Mater. 17, 59–64.

    Article  CAS  Google Scholar 

  22. A. Sanmugam, D. Vikraman, H. J. Park, and A. H.-S. Kim (2017). Nanomaterials 7, 363–376.

    Article  CAS  Google Scholar 

  23. M. Azarang, A. Shuhaimi, R. Yousefi, A. M. Golsheikh, and M. Sookhakian (2014). Ceramics Int. 40, 10217–10221.

    Article  CAS  Google Scholar 

  24. M. Azarang, A. Shuhaimi, and M. Sookhakian (2015). RSC Adv. 5, 53117–53128.

    Article  CAS  Google Scholar 

  25. S. Kurinobu, K. Tsurusaki, Y. Natui, M. Kimata, and M. Hasegawa (2007). J. Magn. Magn. Mater. 310, e1025–e1027.

    Article  CAS  Google Scholar 

  26. D. Li, H. Haneda, and J. Photochem (2003). J. Photochem. Photobiol. A. 160, (3), 203–212.

    Article  CAS  Google Scholar 

  27. M. Nikazar, M. Alizadeh, R. Lalavi, and M. H. Rostami (2014). Iran. J. Environ. Health Sci. Eng. 12, 21–26.

    Article  CAS  Google Scholar 

  28. M. Safari, M. H. Rostami, M. Alizadeh, A. Alizadehbirjandi, S. A. A. Nakhli, and R. Aminzadeh (2014). J. Environ. Health Sci. Eng. 12, (1), 1–10.

    Article  CAS  Google Scholar 

  29. D. S. Winatapura, S. H. Dewi, and W. A. Adi (2016). Int. J. Technol. 3, 408–416.

    Article  Google Scholar 

  30. M. Abareshi, E. K. Goharshadi, S. M. Zebarjad, H. K. Fadafan, and A. Youssefi (2010). J. Magn. Magn. Mater. 322, 3895–3901.

    Article  CAS  Google Scholar 

  31. A. K. Zak, W. H. A. Majid, M. Darroudi, and R. Yousefi (2011). Mater. Lett. 65, 70–73.

    Article  CAS  Google Scholar 

  32. S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, and A. Youssefi (2015). Synth. React. Inorgan. Metal Organ. Nano Metal Chem. 45, 1539–1548.

    Article  CAS  Google Scholar 

  33. D. Dastan, N. Chaure, and M. Kartha (2017). J. Mater. Sci. Mater. Electron. 28, 7784–7796.

    Article  CAS  Google Scholar 

  34. D. Dastan, S. L. Panahi, and N. B. Chaure (2016). J. Mater. Sci. Mater. Electron. 27, 12291–12296.

    Article  CAS  Google Scholar 

  35. A. Akbarzadeh, M. Samiei, S. W. Joo, M. Anzaby, Y. Hanifehpour, H. T. Nasrabadi, et al. (2012). J. Nanobiotechnol. 10, 46–58.

    Article  CAS  Google Scholar 

  36. S. Abbasi (2019). Environ. Monitor. Assess. 191, (4), 206–218.

    Article  CAS  Google Scholar 

  37. S. Abbasi and M. Hasanpour (2017). J. Mater. Sci. Mater. Electron. 28, (16), 11846–11855. https://doi.org/10.1007/s10854-017-6992-5.

    Article  CAS  Google Scholar 

  38. S. Abbasi, M. Hasanpour, F. Ahmadpoor, M. Sillanpää, D. Dastan, and A. Achour (2020). Int. J. Environ. Anal. Chem.. https://doi.org/10.1080/03067319.2019.1662414.

    Article  Google Scholar 

  39. S. H. Borji, S. Nasseri, R. Nabizadeh, A. H. Mahvi, and A. H. Javadi (2011). Iran. J. Health Environ. 3, (4), 369–380.

    Google Scholar 

  40. H. Yuan and J. Xu (2010). Int. J. Chem. Eng. Appl. 1, (3), 214–246.

    Google Scholar 

  41. S. P. Kim, M. Y. Choi, and H. C. Choi (2015). Appl. Surf. Sci. 357, 302–308.

    Article  CAS  Google Scholar 

  42. K. Byrappa, A. S. Dayananda, C. P. Sajan, B. Basavalingu, M. B. Shayan, K. Soga, et al. (2008). J Mater Sci. 43, 2348–2355.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this study thank the head of the Central Research Nano Laboratory of Esfarayen University of Technology for the license to use the equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedigheh Abbasi.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organisation that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, S. Response Surface Methodology for Photo Degradation of Methyl Orange Using Magnetic Nanocomposites Containing Zinc Oxide. J Clust Sci 32, 805–812 (2021). https://doi.org/10.1007/s10876-020-01847-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01847-y

Keywords

Navigation