Skip to main content
Log in

A conjugated Schiff base-based chemosensor for selectively detecting mercury ion

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A novel conjugated Schiff base-based chemosensor DAP, N′-((1E,2E)-3-(4-(dimethylamino)phenyl)allylidene)-3-nitrobenzohydrazide, has been synthesized. DAP showed significant selectivity toward mercury ion by color change of pale yellow to orange. Detection limit was 0.11 μM, which is lower than the value (2.48 μM) recommended by Health Canada. DAP could recognize and quantify mercury ion in real water samples. The binding mode of DAP and Hg2+ was demonstrated, based on Job plot, IR spectra and ESI-MS.

Graphic abstract

A novel conjugated Schiff base-based chemosensor DAP was developed for the detection of mercury ion by color change of pale yellow to orange. DAP with low detection limit (0.11 μM) could quantify mercury ion in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tang X, Han J, Wang Y, Ni L, Li L, Wang L and Zhang W 2017 A fluorescent chemosensor for Cu 2þ ions and its application in cell imaging Tetrahedron 73 1367

  2. Laramie M D, Levitz A and Henary M 2017 Cyanine and squaric acid metal sensors Sensors Actuators B Chem. 243 1191

    Article  CAS  Google Scholar 

  3. Ma X Q, Wang Y, Wei T B, Qi L H, Jiang X M, Ding J D, Zhu W B, Yao H, Zhang Y M and Lin Q 2019 A novel AIE chemosensor based on quinoline functionalized Pillar[5]arene for highly selective and sensitive sequential detection of toxic Hg2+ and CN Dye. Pigment. 164 279

    Article  CAS  Google Scholar 

  4. Kim B Y, Pandith A, Cho C S and Kim H S 2019 Highly Selective Fluorescent Probe Based on 2-(2′-Dansylamidophenyl)-Thiazole for Sequential Sensing of Copper(II) and Iodide Ions Bull. Korean Chem. Soc. 40 163

    Article  CAS  Google Scholar 

  5. Lim C, Seo H, Choi J H, Kim K S, Helal A and Kim H S 2018 Highly selective fluorescent probe for switch-on Al3+ detection and switch-off F detection J. Photochem. Photobiol. A Chem. 356 312

    Article  CAS  Google Scholar 

  6. Tatay S, Gaviña P, Coronado A E and Palomares E 2006 Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye Org. Lett. 8 3857

    CAS  Google Scholar 

  7. And J W and Qian X 2006 A series of polyamide receptor based PET fluorescent sensor molecules: positively cooperative Hg2+ ion binding with high sensitivity Org. Lett. 8 3721

    Google Scholar 

  8. Xue Z, Liu T and Liu H 2019 Naked-eye chromogenic and fluorogenic chemosensor for mercury (II) ion based on substituted distyryl BODIPY complex Dye. Pigment. 165 65

    Article  CAS  Google Scholar 

  9. Yuan M, Li Y, Li J, Li C, Liu X, Lv J, Xu J, Liu H, Wang S and Zhu D 2007 A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule Org. Lett. 9 2313

    CAS  Google Scholar 

  10. Ko S K, Yang Y K, Tae J and Shin I 2006 In vivo monitoring of mercury ions using a Rhodamine-based molecular probe J. Am. Chem. Soc. 128 14150

    Article  CAS  Google Scholar 

  11. Lin Q, Fan Y Q, Mao P P, Liu L, Liu J, Zhang Y M, Yao H and Wei T B 2018 Pillar[5]arene-based supramolecular organic framework with multi-guest detection and recyclable separation properties Chem. - A Eur. J. 24 777

  12. Huang C C and Chang H T 2006 Selective gold-nanoparticle-based “Turn-On” Fluorescent sensors for detection of Mercury (II) in aqueous solution Anal. Chem. 78 8332

    CAS  Google Scholar 

  13. Darbha G K, Singh A K, Rai U S, Yu E, Yu H and Ray P C 2008 Selective Detection of Mercury (II) ion using nonlinear optical properties of gold nanoparticles J. Am. Chem. Soc. 130 8038

    Article  CAS  Google Scholar 

  14. Fang Y, Li X, Li J Y, Wang G Y, Zhou Y, Xu N Z, Hu Y and Yao C 2018 Thiooxo-Rhodamine B hydrazone derivatives bearing bithiophene group as fluorescent chemosensors for detecting mercury(II) in aqueous media and living HeLa cells Sensors Actuators B Chem. 255 1182

  15. Shunmugam R, Gabriel G J, Smith C E, Aamer K A and Tew G N 2008 A Highly Selective Colorimetric Aqueous Sensor for Mercury Chem. - A Eur. J. 14 3904

  16. Chen L, Lou T, Yu C, Kang Q and Chen L 2011 N-1-(2-Mercaptoethyl)thymine modification of gold nanoparticles: a highly selective and sensitive colorimetric chemosensor for Hg2+ Analyst 136 4770

  17. Shyamal M, Maity S, Maity A, Maity R, Roy S and Misra A 2018 Aggregation induced emission based “turn-off” fluorescent chemosensor for selective and swift sensing of mercury (II) ions in water Sensors Actuators, B Chem. 263 347

    CAS  Google Scholar 

  18. Mandal S, Sikdar Y, Maiti D K, Sanyal R, Das D, Mukherjee A and Mandal S K 2017 New pyridoxal based chemosensor for selective detection of Zn2+: Application in live cell imaging and phosphatase activity response J. Photochem. Photobiol. A Chem. 334 86

    Article  CAS  Google Scholar 

  19. Kim B Y, Kim H S and Helal A 2015 A fluorescent chemosensor for sequential recognition of gallium and hydrogen sulfate ions based on a new phenylthiazole derivative Sensors Actuators B Chem. 206 430

  20. Gupta V K, Mergu N and Singh A K 2015 Rhodamine-derived highly sensitive and selective colorimetric and off–on optical chemosensors for Cr3+ Sensors Actuators B Chem. 220 420

  21. Kim M S, Lee S Y, Jung J M and Kim C 2017 A new Schiff-base chemosensor for selective detection of Cu2+ and Co2+ and its copper complex for colorimetric sensing of S2− in aqueous solution Photochem. Photobiol. Sci. 16 1677

    Article  CAS  Google Scholar 

  22. Beneto A J and Siva A 2017 A phenanthroimidazole based effective colorimetric chemosensor for copper(II) and fluoride ions Sensors Actuators B Chem. 247 526

  23. Gore A H, Gunjal D B, Kokate M R, Sudarsan V T, Anbhule P V, Patil S R and Kolekar G B 2012 Highly selective and sensitive recognition of Cobalt (II) ions directly in aqueous solution using carboxyl-functionalized CdS QDs as a naked eye colorimetric probe: applications to environmental analysis ACS Appl. Mater. Interfaces 4 5217

    Article  CAS  Google Scholar 

  24. Fu X, Chen L, Li J, Lin M, You H and Wang W 2012 Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide Biosens. Bioelectron. 34 227

    Article  CAS  Google Scholar 

  25. Li J, Zhang Z, Xu S, Chen L, Zhou N, Xiong H and Peng H 2011 Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels J. Mater. Chem. 21 19267

    Article  CAS  Google Scholar 

  26. Lou T, Chen Z, Wang Y and Chen L 2011 Blue-to-Red Colorimetric Sensing Strategy for Hg2+ and Ag+ via Redox-Regulated Surface Chemistry of Gold Nanoparticles. ACS Appl. Mater. Interfaces 3 1568

    Article  CAS  Google Scholar 

  27. Udhayakumari D, Naha S and Velmathi S 2017 Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Anal. Methods 9 552

  28. Song E J, Park G J, Lee J J, Lee S, Noh I, Kim Y, Kim S J, Kim C and Harrison R G 2015 A fluorescence sensor for Zn2+ that also acts as a visible sensor for Co2+ and Cu2+. Sensors Actuators B Chem. 213 268

    Article  CAS  Google Scholar 

  29. Lee H G, Lee J H, Jang S P, Park H M, Kim S J, Kim Y, Kim C and Harrison R G 2011 Zinc selective chemosensor based on pyridyl-amide fluorescence Tetrahedron 67 8073

    Article  CAS  Google Scholar 

  30. Xia D, Wang P and Shi B 2017 Cu(II) Ion-responsive self-assembly based on a water-soluble Pillar[5]arene and a Rhodamine B-containing amphiphile in aqueous media Org. Lett. 19 202

    CAS  Google Scholar 

  31. Prodi L 2005 Luminescent chemosensors: from molecules to nanoparticles New J. Chem. 29 20

    CAS  Google Scholar 

  32. Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J and James T D 2017 Fluorescent chemosensors: the past, present and future Chem. Soc. Rev. 46 7105

    Article  CAS  Google Scholar 

  33. Kim K T, Yoon S A, Ahn J, Choi Y, Lee M H, Jung J H and Park J 2017 Synthesis of fluorescent naphthalimide-functionalized Fe3O4 nanoparticles and their application for the selective detection of Zn2+ present in contaminated soil Sensors Actuators B Chem. 243 1034

  34. Maity D, Kumar V and Govindaraju T 2012 Reactive probes for ratiometric detection of Co2+ and Cu+ based on excited-state intramolecular proton transfer mechanism Org. Lett. 14 6008

    CAS  Google Scholar 

  35. Gholami M D, Manzhos S, Sonar P, Ayoko G A and Izake E L 2019 Dual chemosensor for the rapid detection of mercury(II) pollution and biothiols Analyst 144 4908

  36. Wu J, Liu W, Ge J, Zhang H and Wang P 2011 New sensing mechanisms for design of fluorescent chemosensors emerging in recent years Chem. Soc. Rev. 40 3483

    Article  CAS  Google Scholar 

  37. Wang S, Men G, Zhao L, Hou Q and Jiang S 2010 Binaphthyl-derived salicylidene Schiff base for dual-channel sensing of Cu, Zn cations and integrated molecular logic gates Sensors Actuators B Chem. 145 826

    Article  CAS  Google Scholar 

  38. Lee J J, Choi Y W, You G R, Lee S Y, Kim C, Edelmann F T, Pople J A, Basu A, Bendre R and Kuwar A 2015 A phthalazine-based two-in-one chromogenic receptor for detecting Co2+ and Cu2+ in an aqueous environment Dalton Trans. 44 13305

    CAS  Google Scholar 

  39. Bhattacharyya A, Ghosh S, Makhal S C and Guchhait N 2017 Hydrazine bridged coumarin-pyrimidine conjugate as a highly selective and sensitive Zn2+ sensor: Spectroscopic unraveling of sensing mechanism with practical application Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 183 306

  40. Jung J M, Lee S Y and Kim C 2017 A novel colorimetric chemosensor for multiple target metal ions Fe2+, Co2+, and Cu2+ in a near-perfect aqueous solution: Experimental and theoretical studies Sensors Actuators B Chem. 251 291

  41. Canada H, Environments H, Branch C S, Environments S and Management T 2004 Mercury Your Health and the Environment A Resource Tool

  42. Singhal D, Gupta N and Singh A K 2015 Chromogenic “naked eye” and fluorogenic “turn on” sensor for mercury metal ion using thiophene-based Schiff base RSC Adv. 5 65731

  43. Fang W, Zhang G, Chen J, Kong L, Yang L, Bi H and Yang J 2016 An AIE active probe for specific sensing of Hg2+ based on linear conjugated bis-Schiff base Sensors Actuators B Chem. 229 338

    CAS  Google Scholar 

  44. Manna A K, Mondal J, Chandra R, Rout K and Patra G K 2018 A thio-urea based chromogenic and fluorogenic chemosensor for expeditious detection of Cu2+, Hg2+ and Ag+ ions in aqueous medium J. Photochem. Photobiol. A Chem. 356 477

    Article  CAS  Google Scholar 

  45. Sun T, Niu Q, Li Y, Li T and Liu H 2017 Novel oligothiophene-based dual-mode chemosensor: “Naked-Eye” colorimetric recognition of Hg2+ and sequential off-on fluorescence detection of Fe3+ and Hg2+ in aqueous media and its application in practical samples Sensors Actuators B Chem. 248 24

    CAS  Google Scholar 

  46. Wu G, Shi B, Hu B, Zhang Y, Lin Q, Yao H and Wei T 2014 A rational designed dual-channel chemosensor for mercury ions based on hydrolysis of Schiff base Chin. J. Chem. 32 637

    CAS  Google Scholar 

  47. Tsai H J, Su Y C, Wan C F and Wu A T 2018 A selective colorimetric fluorescent chemosensor for Hg2+ in aqueous medium and in the solid state J. Lumin. 194 279

    Article  CAS  Google Scholar 

  48. TG A K, Tekuri V, Mohan M and Trivedi D R 2019 Selective colorimetric chemosensor for the detection of Hg2+ and arsenite ions using Isatin based Schiff’s bases; DFT Studies and Applications in test strips Sensors Actuators B Chem. 284 271

    Article  Google Scholar 

  49. Cho H, Chae J B and Kim C 2019 Cinnamaldehyde-based chemosensor for colorimetric detection of Cu2+ and Hg2+ in a near-perfect aqueous solution Chemistry Select 4 2795

  50. Jung J M, Kim C and Harrison R G 2018 A dual sensor selective for Hg2+ and cysteine detection Sensors Actuators B Chem. 255 2756

Download references

Acknowledgements

NRF (National Research Foundation of Korea) (2018R1A2B6001686) are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheal Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A., Kim, S. & Kim, C. A conjugated Schiff base-based chemosensor for selectively detecting mercury ion. J Chem Sci 132, 82 (2020). https://doi.org/10.1007/s12039-020-01789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01789-y

Keywords

Navigation