Skip to main content

Advertisement

Log in

Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review

  • Review Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cell (DSSC) which was first introduced by Gratzel and co-workers 29 years ago is very attractive as the next generation sustainable energy device owing to its unique features such as inexpensive, flexibility, eco-friendly, simplicity in fabrication, functional at both indoors and outdoors, and so on. The heart of DSSC is the electrolyte which contains a redox mediator (e.g., I/I3). Conventional electrolyte used in DSSC is an organic liquid with the redox couple dissolved in it. Liquid electrolytes have high ionic conductivity but they suffer from leakage and electrochemical corrosion that affect the stability and consequently the cell performance. These have prompted researchers to employ polymer electrolytes particularly in gel form. Many gel polymer electrolytes (GPEs) have been developed but in this article, we pay special tribute to GPEs based on polyacrylonitrile (PAN) due to its high ambient conductivity, good mechanical integrity, and electrochemical stability with good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677

    CAS  Google Scholar 

  2. Powalla M, Paetel S, Ahlswede E, Wuerz R, Wessendorf CD, Friedlmeier TM (2018) Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Appl Phys Rev 5:041602

    Google Scholar 

  3. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519

    CAS  Google Scholar 

  4. Rühle S (2016) Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol Energy 130:139–147

    Google Scholar 

  5. Rangasamy VS, Thayumanasundaram S, Locquet J-P (2019) Solid polymer electrolytes with poly(vinyl alcohol) and piperidinium based ionic liquid for Li-ion batteries. Solid State Ionics 333:76–82

    CAS  Google Scholar 

  6. Sunitha VR, Kabbur SKM, Pavan GS, Sandesh N, Suhas MR, Lalithnarayan C, Laxman N, Radhakrishnan (2020) Lithium ion conduction in PVA-based polymer electrolyte system modified with combination of nanofillers. Ionics 26:823–829

    CAS  Google Scholar 

  7. Patla SK, Mukhopadhyay M, Ray R (2019) Ion specificity towards structure-property correlation of poly(ethylene oxide) [PEO]-NH4I and PEO-KBr composite solid polymer electrolyte. Ionics 25:627–639

    CAS  Google Scholar 

  8. Jinisha B, Anilkumar KM, Manoj M, Abhilash A, Pradeep VS, Jayalekshmi S (2018) Poly(ethylene oxide) (PEO)-based, sodium-ion conducting, solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells. Ionics 24:1675–1683

    CAS  Google Scholar 

  9. Senthil RA, Theerthagiri J, Madhavan J, Arof AK (2016) Influence of pyrazole on the photovoltaic performance of dye-sensitized solar cell with polyvinylidene fluoride polymer electrolytes. Ionics 22:425–433

    CAS  Google Scholar 

  10. Wang F, Li L, Yang X, You J, Xu Y, Wang H, Ma Y, Gao G (2018) Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain Energy Fuels 2:492–498

    CAS  Google Scholar 

  11. Alves R, Sabadini RC, Silva IDA, Donoso JP, Magon CJ, Pawlicka A, Silva MM (2018) Binary Ce(III) and Li(I) triflate salt composition for solid polymer electrolytes. Ionics 24:2321–2334

    CAS  Google Scholar 

  12. Alves R, Sentanin F, Sabadini RC, Pawlicka SMM (2017) Solid polymer electrolytes based on chitosan and Dy(CF3SO3)3 for electrochromic devices. Solid State Ionics 310:112–120

    CAS  Google Scholar 

  13. Wolfbauer G, Bond AM, Eklund JC, MacFarlane DR (2001) A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Sol Energy Mater Sol Cells 70:85–101

    CAS  Google Scholar 

  14. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Genggeng Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115:2136–2173

    CAS  PubMed  Google Scholar 

  15. Izutsu K (2002) Electrochemistry in nonaqueous solutions. Wiley-VCH, Germany

    Google Scholar 

  16. Yu Z, Vlachopoulos N, Gorlov M, Kloo L (2011) Liquid electrolytes for dye-sensitized solar cells. Dalton Trans 40:10289–10303

    CAS  PubMed  Google Scholar 

  17. Kopeć M, Lamson M, Yuan R, Tang C, Kruk M, Zhong M, Matyjaszewski K, Kowalewski T (2019) Polyacrylonitrile-derived nanostructured carbon materials. Prog Polym Sci 92:89–134

    Google Scholar 

  18. Nataraj SK, Yang KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog Polym Sci 37:487–513

    CAS  Google Scholar 

  19. Ileperuma OA (2013) Gel polymer electrolytes for dye sensitised solar cells: a review. Mater Technol 28:65–70

    CAS  Google Scholar 

  20. Stallworth PE, Li J, Greenbaum SG, Croce F, Slane S, Salomon M (1994) Sodium-23 NMR and complex impedance studies of gel electrolytes based on poly(acrylonitrile). Solid State Ionics 73:119–126

    CAS  Google Scholar 

  21. Dissanayake MAKL, Bandara LRAK, Bokalawala RSP, Jayathilaka PARD, Ileperuma OA, Somasundaram S (2002) A novel gel polymer electrolyte based on polyacrylonitrile (PAN) and its application in a solar cell. Mater Res Bull 37:867–874

    CAS  Google Scholar 

  22. Krigbaum WR, Tokita N (1960) Melting point depression study of polyacrylonitrile. J Polym Sci A Polym Chem 43:467–488

    CAS  Google Scholar 

  23. Jyothi NK, Ratnam KKV, Murthy PN, Kumar KV (2016) Electrical studies of gel polymer electrolyte based on PAN for electrochemical cell applications. Materials Today: Proceedings 3:21–30

    Google Scholar 

  24. Forsyth M, MacFarlane DR, Hill AJ (2000) Glass transition and free volume behavior of poly(acrylonitrile)/LiCF3SO3 polymer-in-salt electrolytes compared to poly(ether urethane)/LiClO4 solid polymer electrolytes. Electrochim Acta 45:1243–1247

    CAS  Google Scholar 

  25. Bashir Z (1999) Polyacrylonitrile, an unusual linear homopolymer with two glass transitions. Indian J Fibre Tex Res 24:1–9

    CAS  Google Scholar 

  26. Ramesh S, Ng HM (2011) An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ionics 192:2–5

    CAS  Google Scholar 

  27. Wang Z, Gao W, Huang X, Mo Y, Chen L (2001) Influence of salt content on polymer dissolution and ionic association in polymer electrolyte. Electrochem Solid-State Lett 4(8):A132–A135

    CAS  Google Scholar 

  28. Chen C-L, Teng H, Lee Y-L (2011) Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate). J Mater Chem 21:628–632

    CAS  Google Scholar 

  29. Chen C-L, Chang T-W, Teng H, Wu C-G, Chen C-Y, Yang Y-M, Lee Y-L (2013) Highly efficient gel-state dye-sensitized solar cells prepared using poly(acrylonitrile-co-vinyl acetate) based polymer electrolytes. Phys Chem Chem Phys 15:3640–3645

    CAS  PubMed  Google Scholar 

  30. Venkatesan S, Su S-C, Hung W-N, Liu I-P, Teng H, Lee Y-L (2015) Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application. J Power Sources 298:385–390

    CAS  Google Scholar 

  31. Yoon H-K, Chung W-S, Jo N-J (2004) Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochim Acta 50:289–293

    CAS  Google Scholar 

  32. Kim D-W, Sun Y-K (2001) Electrochemical characterization of gel polymer electrolytes prepared with porous membranes. J Power Sources 102:41–45

    CAS  Google Scholar 

  33. Abraham KM, Alamgir M (1990) Li+-conductive solid polymer electrolytes with liquid-like conductivity. J Electrochem Soc 137(5):1657–1658

    CAS  Google Scholar 

  34. Huang B, Wang Z, Li G, Huang H, Xue R, Chen L, Wang F (1996) Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ionics 85:79–84

    CAS  Google Scholar 

  35. Dautzenberg G, Croce F, Passerini S, Scrosati B (1994) Characterization of PAN-based gel electrolytes: electrochemical stability and lithium cyclability. Chem Mater 6:538–542

    CAS  Google Scholar 

  36. Slane S, Salomon M (1995) Composite gel electrolyte for rechargeable lithium batteries. J Power Sources 55:7–10

    CAS  Google Scholar 

  37. Pandey GP, Rastogi AC, Westgate CR (2013) Polyacrylonitrile and 1-ethyl-3-methylimidazolium thiocyanate based gel polymer electrolyte for solid-state supercapacitors with graphene electrodes. ECS Trans 50(43):145–151

    Google Scholar 

  38. Tamilarasan P, Ramaprabhu S (2013) Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51:374–381

    CAS  Google Scholar 

  39. Cao F, Oskam G, Searson PC (1995) A solid state, dye sensitized photoelectrochemical cell. J Phys Chem 99(47):17071–17073

    CAS  Google Scholar 

  40. Tennakone K, Senadeera GKR, Perera VPS, Kottegoda IRM, De Silva LAA (1999) Dye-sensitized photoelectrochemical cells based on porous SnO2/ZnO composite and TiO2 films with a polymer electrolyte. Chem Mater 11:2474–2477

    CAS  Google Scholar 

  41. Ileperuma OA, Dissanayake MAKL, Somasundaram S (2002) Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes. Electrochim Acta 47:2801–2807

    CAS  Google Scholar 

  42. Kang J, Li W, Wang X, Lin Y, Li X, Xiao X, Fang S (2004) Gel polymer electrolytes based on novel quarternary ammonium salt for dye-sensitized solar cells. J Appl Electrochem 34:301–304

    CAS  Google Scholar 

  43. Wang G, Zhou X, Li M, Zhang J, Kang J, Lin Y, Fang S, Xiao X (2004) Gel polymer electrolytes based on polyacrylonitrile and a novel quaternary ammonium salt for dye-sensitized solar cells. Mater Res Bull 39:2113–2118

    CAS  Google Scholar 

  44. Ileperuma OA, Dissanayake MAKL, Somasundaram S, Bandara LRAK (2004) Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes. Sol Energy Mater Sol Cells 84:117–124

    CAS  Google Scholar 

  45. Lan Z, Wu J, Wang D, Hao S, Lin J, Huang Y (2006) Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI+I2. Sol Energy 80:1483–1488

    CAS  Google Scholar 

  46. Ileperuma OA, Kumara GRA, Murakami K (2008) Quasi-solid polymer electrolytes based on polyacrylonitrile and plasticizers for indoline dye sensitized solar cells of efficiency 5.3%. Chem Lett 37(1):36–37

    CAS  Google Scholar 

  47. Kakuta N, Oku T, Suzuki A, Kikuchi K, Kikuchi S (2009) Fabrication and characterization of mixture type dye-sensitized solar cells with organic dyes. J Ceram Soc Jpn 117(9):964–966

    CAS  Google Scholar 

  48. Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander B-E (2010) Dye-sensitized, nano-porous TiO2 solar cell with poly(acrylonitrile): MgI2 plasticized electrolyte. J Power Sources 195:3730–3734

    CAS  Google Scholar 

  49. Ileperuma OA, Kumara GRA, Yang H-S, Murakami K (2011) Quasi-solid electrolyte based on polyacrylonitrile for dye-sensitized solar cells. J Photochem Photobiol A Chem 217(2–3):308–312

    CAS  Google Scholar 

  50. Akhtar MS, Li ZY, Park DM, Oh DW, Kwak D-H, Yang O-B (2011) A new carbon nanotubes (CNTs)–poly acrylonitrile (PAN) composite electrolyte for solid state dye sensitized solar cells. Electrochim Acta 56:9973–9979

    CAS  Google Scholar 

  51. Oku T, Kakuta N, Kobayashi K, Suzuki A, Kikuchi K (2011) Fabrication and characterization of TiO2-based dye-sensitized solar cells. Prog Nat Sci: Mater Int 21:122–126

    Google Scholar 

  52. Chen C-L, Teng H, Lee Y-L (2011) In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells. Adv Mater 23:4199–4204

    CAS  PubMed  Google Scholar 

  53. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundera WJMJSR, Mellander B-E (2012) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. J Photochem Photobiol A Chem 246:29–35

    CAS  Google Scholar 

  54. Bandara TMWJ, Dissanayake MAKL, Jayasundara WJMJSR, Albinsson I, Mellander B-E (2012) Efficiency enhancement in dye-sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system. Phys Chem Chem Phys 14:8620–8627

    CAS  PubMed  Google Scholar 

  55. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundara WJMJSR, Mellander B-E (2013) Efficiency enhancement in dye sensitized solar cells based on PAN gel electrolyte with Pr4NI + MgI2 binary iodide salt mixture. J Appl Electrochem 43:891–901

    CAS  Google Scholar 

  56. Bandara TMWJ, Jayasundara WJMJSR, Dissanayake MAKL, Furlani M, Albinsson I, Mellander B-E (2013) Effect of cation size on the performance of dye sensitized nanocrystalline TiO2 solar cells based on quasi-solid state PAN electrolytes containing quarternary ammonium iodides. Electrochim Acta 109:609–616

    CAS  Google Scholar 

  57. Kumara GRA, Kehelpannala C, Ranasinghe CSK, Jayaweera EN, Rajapakse RMG, Ileperuma OA (2014) A novel method to enhance the performance of quasi-solid-state dye-sensitized solar cells based on polyacrylonitrile gel electrolyte and nanoparticles of ZnO with indoline D-358 as the dye. Chem Lett 43(5):681–683

    CAS  Google Scholar 

  58. Zhao J, Jo S-G, Kim D-W (2014) Photovoltaic performance of dye-sensitized solar cells assembled with electrospun polyacrylonitrile/silica-based fibrous composite membranes. Electrochim Acta 142:261–267

    CAS  Google Scholar 

  59. Sethupathy M, Ravichandran S, Manisankar P (2014) Preparation of PVdF-PAN-V2O5 hybrid composite membrane by electrospinning and fabrication of dye-sensitized solar cells. Int J Electrochem Sci 9:3166–3180

    Google Scholar 

  60. Sethupathy M, Pandey P, Manisankar P (2014) Photovoltaic performance of dye-sensitized solar cells fabricated with polyvinylidene fluoride-polyacrylonitrile-silicondioxide hybrid composite membrane. Mater Chem Phys 143:1191–1198

    CAS  Google Scholar 

  61. Bandara TMWJ, Jayasundara WJMJSR, Fernado HDNS, Dissanayake MAKL, De Silva LAA, Fernando PSL, Furlani M, Mellander B-E (2014) Efficiency enhancement of dye-sensitized solar cells with PAN:CsI:LiI quasi-solid state (gel) electrolytes. J Appl Electrochem 44:917–926

    CAS  Google Scholar 

  62. Bandara TMWJ, Jayasundara WJMJSR, Dissanayake MAKL, Fernando HDNS, Furlani M, Albinsson I, Mellander B-E (2014) Quasi solid state polymer electrolyte with binary iodide salts for photo-electrochemical solar cells. Int J Hydrog Energy 39:2997–3004

    CAS  Google Scholar 

  63. Dissanayake MAKL, Divarathne HKDWMNR, Thotawatthage CA, Dissanayake CB, Senadeera GKR, Bandara BMR (2014) Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte. Electrochim Acta 130:76–81

    CAS  Google Scholar 

  64. Venkatesan S, Obadja N, Chang T-W, Chen L-T, Lee Y-L (2014) Performance improvement of gel- and solid-state dye-sensitized solar cells by utilization the blending effect of poly (vinylidene fluoride-co-hexafluropropylene) and poly (acrylonitrile-co-vinyl acetate) co-polymers. J Power Sources 268:77–81

    CAS  Google Scholar 

  65. Hassan HC, Abidin ZHZ, Careem MA, Arof AK (2014) Chlorophyll as sensitizer in I/I3-based solar cells with quasi-solid-state electrolytes. High Perform Polym 26(6):647–652

    Google Scholar 

  66. Arof AK, Jun HK, Sim LN, Kufian MZ, Sahraoui B (2014) Gel polymer electrolyte based on LiBOB and PAN for the application in dye-sensitized solar cells. Opt Mater 36:135–139

    Google Scholar 

  67. Jayaweera EN, Ranasinghe CSK, Kumara GRA, Wanninayake WMNMB, Senarathne KGC, Tennakone K, Rajapakse RMG, Ileperuma OA (2015) Novel method to improve performance of dye-sensitized solar cells based on quasi-solid gel-polymer electrolytes. Electrochim Acta 152:360–367

    CAS  Google Scholar 

  68. Bandara TMWJ, Aziz MF, Fernando HDNS, Careem MA, Arof AK, Mellander B-E (2015) Efficiency enhancement in dye-sensitized solar cells with a novel PAN-based gel polymer electrolyte with ternary iodides. J Solid State Electrochem 19:2353–2359

    CAS  Google Scholar 

  69. Bandara TMWJ, Jayasundara WJMJSR, Fernando HDNS, Dissanayake MAKL, De Silva LAA, Albinsson I, Furlani M, Mellander B-E (2015) Efficiency of 10% for quasi-solid state dye-sensitized solar cells under low light irradiance. J Appl Electrochem 45(4):289–298

    CAS  Google Scholar 

  70. Venkatesan S, Su S-C, Kao S-C, Teng H, Lee Y-L (2015) Stability improvement of gel-state dye-sensitized solar cells by utilization of the co-solvent effect of propionitrile/acetonitrile and 3-methoxypropionitrile/acetonitrile with poly(acrylonitrile-co-vinyl acetate). J Power Sources 274:506–511

    CAS  Google Scholar 

  71. Adel R, Abdallah T, Moustafa YM, Al-sabagh AM, Talaat H (2015) Effect of polymer electrolyte on the performance of natural dye sensitized solar cells. Superlattice Microst 86:62–67

    CAS  Google Scholar 

  72. Bandara TMWJ, Fernando HDNS, Rupasinghe EJ, Ratnasekera JL, Chandrasena PHNJ, Furlani M, Albinsson I, Dissanayake MAKL, Mellander B-E (2016) N719 and N3 dyes for quasi-solid state dye sensitized solar cells—a comparative study using polyacrylonitrile and CsI based electrolytes. Ceylon J Sci 45:61–69

    Google Scholar 

  73. Wanninayake WMNMB, Premaratne K, Kumara GRA, Rajapakse RMG (2016) Use of lithium iodide and tetrapropylammonium iodide in gel electrolytes for improved performance of quasi-solid-state dye-sensitized solar cells: recording an efficiency of 6.40%. Electrochim Acta 191:1037–1043

    CAS  Google Scholar 

  74. Dissanayake SS, Dissanayake MAKL, Seneviratne VA, Senadeera GKR, Thotawattage CA (2016) Performance of dye sensitized solar cells fabricated with electrospun polymer nanofiber based electrolyte. Materials Today: Proceedings 3:S104–S111

    Google Scholar 

  75. Bandara TMWJ, Fernado HDNS, Furlani M, Albinsson I, Dissanayake MAKL, Ratnasekera JL, Mellander B-E (2017) Dependence of solar cell performance on the nature of alkaline counterion in gel polymer electrolytes containing binary iodides. J Solid State Electrochem 21:1571–1578

    CAS  Google Scholar 

  76. Bandara TMWJ, Fernado HDNS, Furlani M, Albinsson I, Ratnasekera JL, Ajith DeSilva L, Dissanayake MAKL, Mellander B-E (2017) Combined effect of alkaline cations and organic additives for iodide ion conducting gel polymer electrolytes to enhance efficiency in dye-sensitized solar cells. Electrochim Acta 252:208–214

    CAS  Google Scholar 

  77. Arof AK, Noor IM, Buraidah MH, Bandara TMWJ, Careem MA, Albinsson I, Mellander B-E (2017) Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel. Electrochim Acta 251:223–234

    CAS  Google Scholar 

  78. Arof AK, Mat Nor NA, Ramli NR, Aziz N, Noor IM, Taha RM (2017) Utilization of saffron (Crocus sativus L.) as sensitizer in dye-sensitized solar cells (DSSCs). Optical and quantum electronics 49:37 (8 pp)

  79. Harankahawa N, Perera K, Vidanapathirana K (2017) Use of gel polymer electrolytes to integrate photoelectric conversion and energy storage. J Energy Storage 13:96–102

    Google Scholar 

  80. Berendjchi A, Khajavi R, Yousefi AA, Yazdanshenas ME (2017) A facile route for fabricating a dye sensitized solar cell on a polyester fabric substrate. J Clean Prod 149:521–527

    CAS  Google Scholar 

  81. Chew JW, Khanmirzaei MH, Numan A, Omar FS, Ramesh K, Ramesh S (2018) Performance studies of ZnO and multi walled carbon nanotubes-based counter electrodes with gel polymer electrolyte for dye-sensitized solar cell. Mater Sci Semicond Process 83:144–149

    CAS  Google Scholar 

  82. Bettucci O, Becerril VS, Bandara TMWJ, Furlani M, Abrahamsson M, Mellander B-E, Zani L (2018) Organic dye-sensitized solar cells containing alkaline iodide-based gel polymer electrolytes: influence of cation size. Phys Chem Chem Phys 20:1276–1285

    CAS  PubMed  Google Scholar 

  83. Bandara TMWJ, DeSilva LA, Ratnasekera JL, Hettiarachchi KH, Wijerathna AP, Thakurdesai M, Preston J, Albinsson I, Mellander B-E (2019) High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles. Renew Sust Energ Rev 103:282–290

    CAS  Google Scholar 

  84. Saidi NM, Omar FS, Arshid Numan A, Apperley DC, Algaradah MM, Ramesh K, Avestro A-J, Ramesh TS (2019) Enhancing the efficiency of a dye-sensitized solar cell based on a metal oxide nanocomposite gel polymer electrolyte. ACS Appl Mater Interfaces 11(33):30185–30196

    CAS  PubMed  Google Scholar 

  85. Abdullah H, Zainudin MK, Ahmad M, Mahalingam S, Manap ANA (2019) (SiO2)100-x-Nix (x = 2.5, 10.0) composite-based photoanode with polymer gel electrolyte for increased dye-sensitized solar cell performance. Ionics 25:3387–3396

    CAS  Google Scholar 

  86. Chowdhury FI, Buraidah MH, Arof AK, Mellander B-E, Noor IM (2020) Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance. Sol Energy 196:379–388

    CAS  Google Scholar 

  87. Wu Q-Y, Chen X-N, WanL-S XZ-K (2012) Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J Phys Chem B 116:8321–8330

    CAS  PubMed  Google Scholar 

  88. Iftikhar H, Sonai GG, Hashmi SG, Nogueira AF, Lund PD (2019) Progress on electrolytes development in dye-sensitized solar cells. Materials 12:1998 (68 pp)

    CAS  PubMed Central  Google Scholar 

  89. Buzzeo MC, Hardacre C, Compton RG (2006) Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. ChemPhysChem 7:176–180

    CAS  PubMed  Google Scholar 

  90. Kakiage K, Aoyama Y, Yano T, Oya K, J-i F, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897

    CAS  Google Scholar 

  91. Lee K-M, Suryanarayanan V, Ho K-C (2009) Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells. J Power Sources 188:635–641

    CAS  Google Scholar 

  92. Sekhon SS, Arora N, Singh HP (2003) Effect of donor number of solvent on the conductivity behavior of nonaqueous proton-conducting polymer gel electrolytes. Solid State Ionics 160:301–307

    CAS  Google Scholar 

  93. Hara K, Horiguchi T, Kinoshita T, Sayama K, Arakawa H (2001) Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Sol Energy Mater Sol Cells 70:151–161

    CAS  Google Scholar 

  94. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta 46:3457–3466

    CAS  Google Scholar 

  95. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581

    PubMed  Google Scholar 

  96. Kato N, Takeda Y, Higuchi K, Takeichi A, Sudo E, Tanaka H, Motohiro T, Sano T, Toyoda T (2009) Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition. Sol Energy Mater Sol Cells 93:893–897

    CAS  Google Scholar 

  97. Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: Progress, challenges and opportunities. Macromolecules 41:3739–3749

    CAS  Google Scholar 

  98. Lee H-S, Bae S-H, Han C-H, Sekhon SS (2012) Efficiency enhancement of dye-sensitized solar cells with addition of additives (single/binary) to ionic liquid electrolyte. Bull Mater Sci 35(6):1003–1010

    CAS  Google Scholar 

  99. Singh PK, Kim K-W, Park N-G, Rhee H-W (2008) Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application. Synth Met 158:590–593

    CAS  Google Scholar 

  100. Singh PK, Kim K-I, Park N-G, Rhee H-W (2007) Dye sensitized solar cell using polymer electrolytes based on poly(ethylene oxide) with an ionic liquid. Macromol Symp 249-250:162–166

    Google Scholar 

  101. Kato N, Higuchi K, Tanaka H, Nakajima J, Sano T, Toyoda T (2011) Improvement in long-term stability of dye-sensitized solar cell for outdoor use. Sol Energy Mater Sol Cells 95:301–305

    CAS  Google Scholar 

  102. Wang P, Wenger B, Humphry-Baker R, Moser J-E, Teuscher J, Kantlehner W, Mezger J, Stoyanov EV, Zakeeruddin SM, Grätzel M (2005) Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J Am Chem Soc 127:6850–6856

    CAS  PubMed  Google Scholar 

  103. Kim K-S, Demberelnyamba D, Shin B-K, Yeon S-H, Choi S, Cha J-H, Lee H, Lee C-S, Shim J-J (2006) Surface tension and viscosity of 1-butyl-3-methylimidazolium iodide and 1-butyl-3-methylimidazolium tetrafluoroborate, and solubility of lithium bromide+1-butyl-3-methylimidazolium bromide in water. Korean J Chem Eng 23(1):113–116

    CAS  Google Scholar 

  104. Jung H-R, Ju D-H, Lee W-J, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54:3630–3637

    CAS  Google Scholar 

  105. Yang Y, Zhang Z, Gao J, Pan D, Yuan B, Guo X, Huang G (2017) Metal-organic materials as efficient additives in polymer electrolytes for quasi-solid-state dye-sensitized solar cells. J Alloys Compd 726:1286–1294

    CAS  Google Scholar 

  106. Stergiopoulos T, Rozi E, Karagianni C-S, Falaras P (2011) Influence of electrolyte co-additives on the performance of dye-sensitized solar cells. Nanoscale Res Lett 6:307 (7 pp.)

    PubMed  PubMed Central  Google Scholar 

  107. Shi C, Dai S-Y, Wang K-J, Xu Pan X, Kong F-T, Hu L (2005) The adsorption of 4-tert-butylpyridine on the nanocrystalline TiO2 and Raman spectra of dye-sensitized solar cells in situ. Vib Spectrosc 39:99–105

    CAS  Google Scholar 

  108. Kong F-T, Dai S-Y, Wang K-J (2007) Review of recent progress in dye-sensitized solar cells. Advances in Optoelectronics volume 2007: article ID 75384 (13 pp.)

  109. Bella F, Sacco A, Pugliese D, Laurenti M, Bianco S (2014) Additives and salts for dye-sensitized solar cells electrolytes: what is the best choice? J Power Sources 264:333–343

    CAS  Google Scholar 

  110. Zhang CN, Huang Y, Huo ZP, Chen SH, Dai SY (2009) Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability. J Phys Chem C 113:21779–21783

    CAS  Google Scholar 

  111. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14

    Google Scholar 

  112. Sauvage F (2014) A review on current status of stability and knowledge on liquid electrolyte-based dye-sensitized solar cells. Advances in Chemistry volume 2014: Article ID 939525 (23 pp.)

  113. Kim M-J, Park N-G (2012) Urea as a long-term stable alternative to guanidium thiocyanate additive in dye-sensitized solar cell. Appl Surf Sci 258:8915–8918

    CAS  Google Scholar 

  114. Yang H, Liu J, Lin Y, Zhang J, Zhou X (2011) PEO-imidazole ionic liquid-based electrolyte and the influence of NMBI on dye-sensitized solar cells. Electrochim Acta 56:6271–6276

    CAS  Google Scholar 

  115. Fischer A, Pettersson H, Hagfeldt A, Boschloo G, Kloo K, Gorlov M (2007) Crystal formation involving 1-methylbenzimidazole in iodide/triiodide electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 91:1062–1065

    CAS  Google Scholar 

  116. Bandara TMWJ, Fernado HDNS, Furlani M, Albinsson I, Dissanayake MAKL, Mellander B-E (2016) Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells. RSC Adv 6:103683–103691

    CAS  Google Scholar 

  117. Gao R, Wang L, Geng Y, Ma B, Zhu Y, Dong H, Qiu Y (2011) Interface modification effects of 4-tertbutylpyridine interacting with N3 molecules in quasi-solid dye-sensitized solar cells. Phys Chem Chem Phys 13:10635–10640

    CAS  PubMed  Google Scholar 

  118. Zhang K, Zhang S, Sodeyama K, Yang X, Chen H, Yanagida M, Tateyama Y, Han L (2012) A new factor affecting the performance of dye-sensitized solar cells in the presence of 4-tert-butylpyridine. Appl Phys Express 5(4):042303

    Google Scholar 

  119. Chatzivasiloglou E, Stergiopoulos T, Kontos AG, Alexis N, Prodromidis M, Falaras P (2007) The influence of the metal cation and the filler on the performance of dye-sensitized solar cells using polymer-gel redox electrolytes. J Photochem Photobiol A Chem 192:49–55

    CAS  Google Scholar 

  120. Kopidakis N, Benkstein KD, Jvd L, Frank AJ (2003) Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 107:11307–11315

    CAS  Google Scholar 

  121. Bandara TMWJ, Fernado HDNS, Furlani M, Albinsson I, Dissanayake MAKL, Ratnasekera JL, Mellander B-E (2016) Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells. Phys Chem Chem Phys 18:10873–10881

    CAS  PubMed  Google Scholar 

  122. Wang H, Bell J, Desilvestro J, Bertoz M, Evans G (2007) Effect of inorganic iodides on performance of dye-sensitized solar cells. J Phys Chem C 111:15125–15131

    CAS  Google Scholar 

  123. Shen X, Xu W, Xu J, Liang G, Yang H, Yao M (2008) Quasi-solid-state dye-sensitized solar cells based on gel electrolytes containing different alkali metal iodide salts. Solid State Ionics 179:2027–2030

    CAS  Google Scholar 

  124. Pelet S, Moser JE, Grätzel M (2000) Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2. J Phys Chem B 104:1791–1795

    CAS  Google Scholar 

  125. Katzin LI (1957) Factors affecting the solution of inorganic salts in organic solvents. J Inorg Nucl Chem 4(3–4):187–204

    CAS  Google Scholar 

  126. Theerthagiri J, Senthil RA, Buraidah MH, Madhavan J, Arof AK (2015) Effect of tetrabutylammonium iodide content on PVDF-PMMA polymer blend electrolytes for dye-sensitized solar cells. Ionics 21:2889–2896

    CAS  Google Scholar 

  127. Liu X, Qin D, Fan Y, Li K, Li D, Meng Q (2007) An alternative electrolyte based on acetylacetone–pyridine–iodine for dye-sensitized solar cells. Electrochem Commun 9:1735–1738

    CAS  Google Scholar 

  128. Lee S-HA, Jackson A-MS, Hess A, Fei S-T, Pursel SM, Basham J, Grimes CA, Horn MW, Allcock HR, Mallouk TE (2010) Influence of different iodide salts on the performance of dye-sensitized solar cells containing phosphazene-based nonvolatile electrolytes. J Phys Chem C 114:15234–15242

    CAS  Google Scholar 

  129. Cui Y, Zhang X, Feng J, Zhang J, Zhu Y (2013) Enhanced photovoltaic performance of quasi-solid-state dye-sensitized solar cells by incorporating a quarternized ammonium salt into poly(ethylene oxide)/poly(vinylidene fluoride-hexafluoropropylene) composite polymer electrolyte. Electrochim Acta 108:757–762

    CAS  Google Scholar 

  130. Fan LZ, Xing TF, Awan R, Qiu WH (2011) Studies on lithium bis(oxalato)-borate/propylene carbonate-based electrolytes for Li-ion batteries. Ionics 17:491–494

    CAS  Google Scholar 

  131. Hao X, Liu P, Zhang Z, Lai Y, Wang X, Li J, Liu Y (2010) Tetraethylammonium tetrafluoroborate as additive to improve the performance of LiFePO4/artificial graphite cells. Electrochem Solid-State Lett 13(8):A118–A120

    CAS  Google Scholar 

  132. Qin Y and Peng Q (2012) Ruthenium sensitizers and their applications in dye-sensitized solar cells. Int J Photoenergy volume 2012:article ID 291579 (21 pp.)

  133. Kong F, Dai S, Wang K (2006) Purification of bipyridyl ruthenium dye and its application in dye-sensitized solar cells. Plasma Sci Technol 8(5):531–534

    CAS  Google Scholar 

  134. Yum J-H, Baranoff E, Wenger S, Nazeeruddin MK, Gratzel M (2011) Panchromatic engineering for dye-sensitized solar cells. Energy Environ Sci 4:842–857

    CAS  Google Scholar 

  135. Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief review. Sol Energy 85:1172–1178

    CAS  Google Scholar 

  136. Kittidachachan P, Soonpanich W, Damrongsak B (2014) Improved light harvesting in N719 sensitized nanocrystalline TiO2 solar cells with Coumarin 6 dye. Energy Procedia 56:152–156

    CAS  Google Scholar 

  137. Mohammadpour R, Janfaza S, Abbaspour-Aghdam F (2014) Light harvesting and photocurrent generation by nanostructured photoelectrodes sensitized with a photosynthetic pigment: a new application for microalgae. Bioresour Technol 163:1–5

    CAS  PubMed  Google Scholar 

  138. Lim A, Manaf NH, Tennakoon K, Chandrakanthi RLN, Lim LBL, Bandara JMRS, Ekanayake P (2015) Higher performance of DSSC with dyes from Cladophora sp. as mixed cosensitizer through synergistic effect. J Biophys vol. 2015: article ID 510467 (8 pp.)

  139. Taya SA, El-Agez TM, El-Ghamri HS, Abdel-Latif MS (2013) Dye-sensitized solar cells using fresh and dried natural dyes. Int J Mater Sci & Appl 2:37–42

  140. Lai WH, Su YH, Teoh LG, Hon MH (2008) Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J Photochem Photobiol A Chem 195:307–313

    CAS  Google Scholar 

  141. Sharma GD, Kurchania R, Ball RJ, Roy MS, Mikroyannidis JA (2012) Effect of deoxycholic acid on the performance of liquid electrolyte dye-sensitized solar cells using a perylene monoimide derivative. Int J Photoenergy vol. 2012: article ID 983081 (7 pp)

  142. Tatay S, Haque SA, O’Regan B, Durrant JR, Verhees WJH, Kroon JM, Vidal-Ferran A, Gavina P, Palomares E (2007) Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. J Mater Chem 17:3037–3044

    CAS  Google Scholar 

  143. Yen Y-S, Lin T-Y, Hsu C-Y (2013) A remarkable enhancement of efficiency by co-adsorption with CDCA on the bithiazole-based dye-sensitized solar cells. Org Electron 14:2546–2554

    CAS  Google Scholar 

  144. Chen C-Y, Wang M, Li J-Y, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppe J-D, Tsai J-H, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10):3103–3109

    CAS  PubMed  Google Scholar 

  145. Tang H, Prasad K, Sanjinès R, Schmid PE, Lévy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75(4):2042–2047

    CAS  Google Scholar 

  146. Shalini S, Prabhu RB, Prasanna S, Mallick TK, Senthilarasu S (2015) Review on natural dye sensitized solar cells: operation, materials and methods. Renew Sust Energ Rev 51:1306–1325

    CAS  Google Scholar 

  147. Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers. Renew Sust Energ Rev 16:208–215

    CAS  Google Scholar 

  148. Deb SK (2005) Dye-sensitized TiO2 thin-film solar cell research at the National Renewable Energy Laboratory. Sol Energy Mater Sol Cells 88:1–10

    CAS  Google Scholar 

  149. Koyama H, Fujimoto M, Ohno T, Suzuki H, Tanaka J (2006) Effects of thermal annealing on formation of micro porous titanium oxide by the sol-gel method. J Am Ceram Soc 89(11):3536–3540

    CAS  Google Scholar 

  150. Zallen R, Moret MP (2006) The optical absorption edge of brookite TiO2. Solid State Commun 137(3):154–157

    CAS  Google Scholar 

  151. Dou X, Sabba D, Mathews N, Wong LH, Lam YM, Mhaisalkar S (2011) Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells. Chem Mater 23(17):3938–3945

    CAS  Google Scholar 

  152. Debataraja A, Septiani NLW, Yuliarto B, Nugraha SB, Abdullah H (2019) High performance of a carbon monoxide sensor based on a Pd-doped graphene-tin oxide nanostructure composite. Ionics 25:4459–4468

    CAS  Google Scholar 

  153. Bhande SS, Shinde DV, Tehare KK, Patil SA, Mane RS, Naushad M, Alothman ZA, Hui KN, Han SH (2014) DSSCs synergic effect in thin metal oxide layer-functionalized SnO2 photoanodes. J Photochem Photobiol A Chem 295:64–69

    CAS  Google Scholar 

  154. Samsuri SAM, Rahman MYA, Umar AA, Salleh MM (2017) Influence of ZnO growth temperature on the performance of dye-sensitized solar cell utilizing TiO2-ZnO composite film photoanode. Ionics 23:3533–3544

    CAS  Google Scholar 

  155. da Trindade LG, Zanchet L, Trench AB, Souza JC, Carvalho MH, de Oliveira AJA, Pereira EC, Mazzo TM, Longo E (2019) Flower-like ZnO/ionic liquid composites: structure, morphology and photocatalytic activity. Ionics 25:3197–3210

    Google Scholar 

  156. Pambudi YDS, Setiabudy R, Yuwono AH, Kartini E, Lee JK, Hudaya C (2018) Effects of annealing temperature on the electrochemical characteristics of ZnO microrods as anode materials of lithium-ion battery using chemical bath deposition. Ionics 25:457–466

    Google Scholar 

  157. Li X, Zhu G, Dou J, Yang J, Ge Y, Liu J (2019) Electrospun au nanoparticle-containing ZnO nanofiber for non-enzyme H2O2 sensor. Ionics 25:5527–5536

    CAS  Google Scholar 

  158. Suhaimi S, Shahimin SMM, Alahmed ZA, Chyský J, Reshak AH (2015) Materials for enhanced dye-sensitized solar cell performance: electrochemical application. Int J Electrochem Sci 10:2859–2871

    CAS  Google Scholar 

  159. Theerthagiri J, Senthil AR, Madhavan J, Maiyalagan T (2015) Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells. ChemElectroChem 2:928–945

    CAS  Google Scholar 

  160. Caramori S, Cristino V, Boaretto R, Argazzi R, Bignozzi CA, Carlo AD (2010) New components for dye-sensitized solar cells. International journal of Photoenergy vol. 2010:article ID 458614 (16 pp.)

  161. Syrrokostas G, Siokou A, Leftheriotis G, Yianoulis P (2012) Degradation mechanisms of Pt counter electrodes for dye sensitized solar cells. Sol Energy Mater Sol Cells 103:119–127

    CAS  Google Scholar 

  162. Theerthagiri J, Senthil RA, Buraidah MH, Raghavender M, Madhavan J, Arof AK (2016) Synthesis and characterization of (Ni1-xCox)Se2 based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells. J Solid State Chem 238:113–120

    CAS  Google Scholar 

  163. Theerthagiri J, Senthil RA, Susmitha K, Raghavender M, Madhavan J (2015) Synthesis of efficient Ni0.9X0.1Se2 (X=cd, co, Sn and Zn) based ternary selenides for dye-sensitized solar cells. Mater Sci Forum 832:61–71

    Google Scholar 

  164. Theerthagiri J, Senthil RA, Buraidah MH, Madhavan J, Arof AK (2015) Synthesis of α-Mo2C by carburization of α-MoO3 nanowires and its electrocatalytic activity towards tri-iodide reduction for dye-sensitized solar cells. J Mater Sci Technol 32(12):1339–1344

    Google Scholar 

  165. Mahalingam S, Abdullah H, Shaari S, Muchtar A (2016) Improved catalytic activity of Pt/rGO counter electrode in In2O3-based DSSC. Ionics 22:2487–2497

    CAS  Google Scholar 

  166. Wu K, Zhao J, Xiong Y, Ruan B, Wu M (2018) Synthesis and performance of La2O3@MWCNT composite materials as Pt-free counter electrodes for dye-sensitized solar cells. Ionics 24:4055–4061

    CAS  Google Scholar 

  167. Ngamsinlapasathian S, Sreethawong T, Suzuki Y, Yoshikawa S (2006) Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:2129–2140

    CAS  Google Scholar 

  168. Rho W-Y, Jeon H, Kim H-S, Chung W-J, Suh JS, Jun B-H (2015) Recent progress in dye-sensitized solar cells for improving efficiency: TiO2 nanotube arrays in active layer. Journal of Nanomaterials vol. 2015: article ID 247689 (17 pp)

  169. Su H, Zhang M, Chang Y-H, Zhai P, Hau NY, Huang Y-T, Liu C, Soh AK, Feng S-P (2014) Highly conductive and low cost Ni-PET flexible substrate for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 6:5577–5584

    CAS  PubMed  Google Scholar 

  170. Baek GW, Kim Y-J, Jung K-H, Han YS (2019) Enhancement of solar cell performance through the formation of a surface dipole on polyacrylonitrile-treated TiO2 photoelectrodes. J Ind Eng Chem 73:260–267

    CAS  Google Scholar 

  171. Sa’adah U, Himmah SW, Suprayogi T, Diantoro M, Sujito N (2019) The effect of time deposition of PAN/TiO2 electrospun on photocurrent performance of dye-sensitized solar cell. Materials Today: Proceedings 13:175–180

    Google Scholar 

  172. Eslah S, Nouri M (2019) Synthesis and characterization of tungsten trioxide/polyaniline/polyacrylonitrile composite nanofibers for application as a counter electrode of DSSCs. Russ J Electrochem 55(4):291–304

    Google Scholar 

  173. Junger IJ, Wehlage D, Böttjer R, Grothe T, Juhász L, Grassmann C, Blachowicz T, Ehrmann A (2018) Dye-sensitized solar cells with electrospun nanofiber mat-based counter electrodes. Materials 11:1604(13 pp.)

  174. Mozaffari S, Nateghi MR, Zarandi MB (2017) An overview of the challenges in the commercialization of dye sensitized solar cells. Renew Sust Energ Rev 71:675–686

    CAS  Google Scholar 

  175. Kroon JM, Bakker NJ, Smit HJP, Liska P, Thampi KR, Wang P, Zakeeruddin SM, Gratzel M, Hinsch A, Hore S, Wurfel U, Sastrawan R, Durrant JR, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch GE (2007) Nanocrystalline dye sensitized solar cells having maximum performance. Prog Photovolt Res Appl 15(1):1–18

    CAS  Google Scholar 

  176. Gorni G, Zama I, Martelli C, Armiento L (2019) Fabrication of dye-sensitized solar modules based on a prototyping pilot line and their integration into energy storage microsystems. J Eur Ceram Soc 39(1):85–91

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Malaysian Ministry of Higher Education for the project granted under Fundamental Research Grant Scheme (FRGS/1/2019/STG07/UM/02/3) and University of Malaya for project no. GPF045B-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Buraidah.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, L.P., Buraidah, M.H. & Arof, A.K. Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review. Ionics 26, 4215–4238 (2020). https://doi.org/10.1007/s11581-020-03655-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03655-w

Keywords

Navigation