Skip to main content
Log in

Plane Center Vortices and Fractional Topological Charge

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The relation between center vortices and fractional topological charge has been studied in this work. Specifically, we investigate a vortex configuration with fractional topological charge analyzing the lowest modes of the adjoint Dirac operator in both overlap and staggered formulations. We discuss the effects leading to chiral symmetry breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. ’t Hooft, G.: . Nucl. Phys. B 138, 1 (1978)

    ADS  Google Scholar 

  2. Vinciarelli, P.: . Phys. Lett. B78, 485–488 (1978)

    ADS  Google Scholar 

  3. Yoneya, T.: . Nucl. Phys. B144, 195–218 (1978)

    ADS  Google Scholar 

  4. Cornwall, J. M.: . Nucl. Phys. B157, 392–412 (1979)

    ADS  Google Scholar 

  5. Mack, G., Petkova, V. B.: . Annals Phys. 123, 442 (1979)

    ADS  Google Scholar 

  6. Nielsen, H. B., Olesen, P.: . Nucl. Phys. B160, 380–396 (1979)

    ADS  Google Scholar 

  7. Del Debbio, L., et al.: . Phys. Rev. D 55, 2298–2306 (1997). arXiv:9610005

    ADS  Google Scholar 

  8. Langfeld, K., et al.: . Phys. Lett. B 419, 317–321 (1998). arXiv:hep-lat/9710068

    MathSciNet  ADS  Google Scholar 

  9. Del Debbio, L., et al.: NATO Advanced Research Workshop, pp. 47–64. arXiv:hep-lat/9708023 (1997)

  10. Langfeld, K., et al.: . Phys. Lett. B 452, 301 (1999). arXiv:hep-lat/9805002

    ADS  Google Scholar 

  11. Kovacs, T. G., et al.: . Phys. Rev. D 57, 4054–4062 (1998). arXiv:hep-lat/9711009

    ADS  Google Scholar 

  12. Engelhardt, M., et al.: . Nucl. Phys. B 585, 591–613 (2000). arXiv:hep-lat/9912003

    ADS  Google Scholar 

  13. Engelhardt, M., et al.: . Phys. Rev. D 61, 054504 (2000). arXiv:hep-lat/9904004

    ADS  Google Scholar 

  14. Bertle, R., Faber, M.: Confinement V. pp. 3–12. arXiv:hep-lat/0212027 (2002)

  15. Engelhardt, M., et al.: . Nucl. Phys. B 685, 227–248 (2004). arXiv:hep-lat/0311029

    ADS  Google Scholar 

  16. Höllwieser, R., et al.: . AIP Conf. Proc. 1701, 1411.7089 (2016). arXiv:030007

    ADS  Google Scholar 

  17. Altarawneh, D., et al.: . Phys. Rev. D 93(5), 054007 (2016). arXiv:1508.07596

    ADS  Google Scholar 

  18. Höllwieser, R., Altarawneh, D.: . Int. J. Mod. Phys. A 30(34), 1550207 (2015). arXiv:1509.00145

    ADS  Google Scholar 

  19. Altarawneh, D., et al.: . Phys. Rev. D 94(11), 114506 (2016). arXiv:1606.07115

    ADS  Google Scholar 

  20. Greensite, J.: . Prog. Part. Nucl. Phys. 51, 1 (2003). arXiv:hep-lat/0301023

    ADS  Google Scholar 

  21. Greensite, J., et al.: . Phys. Rev. D 91(5), 054509 (2015). arXiv:1411.5091

    ADS  Google Scholar 

  22. Engelhardt, M.: . Nucl. Phys. B 585, 614 (2000). arXiv:hep-lat/0004013

    ADS  Google Scholar 

  23. Bertle, R., et al.: . Phys. Rev. D 64, 074504 (2001). arXiv:hep-lat/0104004

    ADS  Google Scholar 

  24. Bruckmann, F., et al.: . Phys. Rev. D 68, 105011 (2003). arXiv:hep-th/0307219

    MathSciNet  ADS  Google Scholar 

  25. Jordan, G., et al.: . Phys. Rev. D 77, 014515 (2008). arXiv:0710.5445

    ADS  Google Scholar 

  26. Engelhardt, M.: . Phys. Rev. D 83, 025015 (2011). arXiv:1008.4953

    ADS  Google Scholar 

  27. Höllwieser, R, et al.: . arXiv:1005.1015

  28. Höllwieser, R, et al.: . JHEP 06, 052 (2011). arXiv:1103.2669

    ADS  Google Scholar 

  29. Schweigler, T., et al.: . Phys. Rev. D 87(5), 054504 (2013). arXiv:1212.3737

    ADS  Google Scholar 

  30. Höllwieser, R, et al.: . Phys Rev. D 86, 014513 (2012). arXiv:1202.0929

    ADS  Google Scholar 

  31. Höllwieser, R, et al.: . PoS LATTICE2014 356, arXiv:1411.7097 (2015)

  32. Nejad, S. M. H., et al.: . JHEP 10, 108 (2015). arXiv:1508.01042

    ADS  Google Scholar 

  33. Höllwieser, R, et al.: . Phys. Rev. D 92(3), 034502 (2015). arXiv:1503.00016

    ADS  Google Scholar 

  34. Altarawneh, D., Höllwieser, R.: . Int. J. Mod. Phys. A 34(10), 1975001 (2019). arXiv:1812.11217

    ADS  Google Scholar 

  35. Altarawneh, D., Faber, M., Höllwieser, R.: . Modern Phys. Lett. A 2, 2050118 (2020)

    Google Scholar 

  36. de Forcrand, P., D’Elia, M.: . Phys. Rev. Lett. 82, 4582–4585 (1999). arXiv:hep-lat/9901020

    ADS  Google Scholar 

  37. Alexandrou, C., et al.: . Nucl. Phys. A 663, arXiv:hep-lat/9909005 (2000)

    Google Scholar 

  38. Engelhardt, M., et al.: . Nucl. Phys. B 567, 249 (2000). arXiv:hep-th/9907139

    ADS  Google Scholar 

  39. Reinhardt, H., et al.: . Confinement IV pp. 150–162. arXiv:0010031 (2002)

  40. Engelhardt, M., et al.: . Nucl. Phys. B 638, 81–110 (2002). arXiv:hep-lat/0204002

    ADS  Google Scholar 

  41. Leinweber, D. B., et al.: . Nucl. Phys. Proc. Suppl. 161, 130–135 (2006)

    ADS  Google Scholar 

  42. Bornyakov, V. G., et al.: . Phys. Rev. D 77, 074507 (2008). arXiv:0708.3335

    ADS  Google Scholar 

  43. Höllwieser, R., et al.: . Phys. Rev. D 78, 054508 (2008). arXiv:0805.1846

    ADS  Google Scholar 

  44. Bowman, P. O., et al.: . Phys. Rev. D 84, 034501 (2011). arXiv:1010.4624

    ADS  Google Scholar 

  45. Höllwieser, R., et al.: . Phys. Rev. D 88, 114505 (2013). arXiv:1304.1277

    ADS  Google Scholar 

  46. Höllwieser, R., et al.: . PoS LATTICE2013 505, arXiv:1410.2333 (2014)

  47. Trewartha, D., et al.: . PoS LATTICE2014 357, arXiv:1411.0766 (2014)

  48. Trewartha, D., et al.: . Phys. Lett. B 747, 373–377 (2015). arXiv:1502.06753

    ADS  Google Scholar 

  49. Reinhardt, H.: . Nucl. Phys. B 628, 133–166 (2002). arXiv:hep-th/0112215

    ADS  Google Scholar 

  50. Atiyah, M. F., Singer, I. M.: . Annals Math. 93, 139–149 (1971)

    MathSciNet  Google Scholar 

  51. Schwarz, A. S.: . Phys. Lett. B67, 172–174 (1977)

    ADS  Google Scholar 

  52. Brown, L. S., et al.: . Phys. Rev. D16, 417–422 (1977)

    ADS  Google Scholar 

  53. Narayanan, R., et al.: . Nucl. Phys. B 443, 305–385 (1995). arXiv:hep-th/9411108

    ADS  Google Scholar 

  54. Atiyah, M. F., Singer, I. M.: Index theory for skew-adjoint Fredholm operators

  55. Kovalenko, A. V., et al.: . Phys. Lett. B 648, 383–387 (2007). arXiv:hep-lat/0512036

    MathSciNet  ADS  Google Scholar 

  56. Faber, M., Höllwieser, R.: How center vortices break chiral symmetry. AIP Conf. Proc. 1701, 030005 (2016)

    Google Scholar 

  57. Höllwieser, R.: Center vortices, Topological charge and chiral symmetry breaking, vol. 10. arXiv:1706.06436 (2017)

  58. Faber, M., Höllwieser, R.: Chiral symmetry breaking on the lattice. Prog. Part. Nucl. Phys. 97, arXiv:1908.09740 (2017)

    ADS  Google Scholar 

  59. Banks, T., Casher, A.: . Nucl. Phys. B169, 103–125 (1980)

    ADS  Google Scholar 

  60. Casher, A.: . Phys. Lett. B83, 395 (1979)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derar Altarawneh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altarawneh, D., Höllwieser, R. & Faber, M. Plane Center Vortices and Fractional Topological Charge. Int J Theor Phys 59, 2397–2403 (2020). https://doi.org/10.1007/s10773-020-04509-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04509-x

Keywords

Navigation