Skip to main content
Log in

MLKL Aggravates Ox-LDL-Induced Cell Pyroptosis via Activation of NLRP3 Inflammasome in Human Umbilical Vein Endothelial Cells

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Atherosclerosis is a progressive chronic inflammation in the arterial walls. It is believed that the deposition of low-density lipoprotein (LDL) and its damage to endothelial cells play a vital role in atherosclerosis. Oxidized LDL (Ox-LDL) was confirmed to induce endothelial cell pyroptosis which plays an important role in intima inflammation and the development of atherosclerosis, but the underlying molecular mechanism needs to be explored. Here, we showed that ox-LDL upregulated the expression of mixed lineage kinase domain-like (MLKL) protein at both the mRNA and protein levels in endothelial cells, associated with the augment of pro-caspase-1 cleavage, interleukin-1β (IL-1β) maturation, pro-IL-1β production, and lactate dehydrogenase (LDH) release. Overexpression of MLKL substantially aggravated ox-LDL-induced increasing levels of caspase-1, IL-1β, pro-IL-1β, and LDH. MLKL-induced caspase-1 activation and IL-1β maturation were abolished by NLR family, pyrin domain-containing 3 (NLRP3) specific inhibitor MCC950, or extracellular high potassium concentration. Our findings indicated that MLKL is essential for regulation of ox-LDL-induced pyroptosis and inflammation through the activation of NLRP3 inflammasome, and suggested that MLKL could act as potential therapeutic targets to ameliorate atherosclerosis-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weissberg, P.L., and M.R. Bennett. 1999. Atherosclerosis-an inflammatory disease. The New England Journal of Medicine 340: 1928–1929.

    CAS  PubMed  Google Scholar 

  2. Suciu, C.F., M. Prete, P. Ruscitti, E. Favoino, R. Giacomelli, and F. Perosa. 2018. Oxidized low density lipoproteins: the bridge between atherosclerosis and autoimmunity. Possible implications in accelerated atherosclerosis and for immune intervention in autoimmune rheumatic disorders. Autoimmunity Reviews 17: 366–375.

    CAS  PubMed  Google Scholar 

  3. Fernandez-Friera, L., V. Fuster, B. Lopez-Melgar, B. Oliva, J.M. Garcia-Ruiz, J. Mendiguren, et al. 2017. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. Journal of the American College of Cardiology 70: 2979–2991.

    CAS  PubMed  Google Scholar 

  4. Tousoulis, D., E. Oikonomou, E.K. Economou, F. Crea, and J.C. Kaski. 2016. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. European Heart Journal 37: 1723–1732.

    CAS  PubMed  Google Scholar 

  5. Bergsbaken, T., S.L. Fink, and B.T. Cookson. 2009. Pyroptosis: host cell death and inflammation. Nature Reviews. Microbiology 7: 99–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gross, O., A.S. Yazdi, C.J. Thomas, M. Masin, L.X. Heinz, G. Guarda, et al. 2012. Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36: 388–400.

    CAS  PubMed  Google Scholar 

  7. Miao, E.A., I.A. Leaf, P.M. Treuting, D.P. Mao, M. Dors, A. Sarkar, S.E. Warren, M.D. Wewers, and A. Aderem. 2010. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunology 11: 1136–1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Opdenbosch, N., and M. Lamkanfi. 2019. Caspases in cell death, inflammation, and disease. Immunity 50: 1352–1364.

    PubMed  PubMed Central  Google Scholar 

  9. Zhaolin, Z., L. Guohua, W. Shiyuan, and W. Zuo. 2019. Role of pyroptosis in cardiovascular disease. Cell Proliferation 52: e12563.

    PubMed  Google Scholar 

  10. Yin, Y., X. Li, X. Sha, H. Xi, Y.F. Li, Y. Shao, J. Mai, A. Virtue, J. Lopez-Pastrana, S. Meng, D.G. Tilley, M.A. Monroy, E.T. Choi, C.J. Thomas, X. Jiang, H. Wang, and X.F. Yang. 2015. Early hyperlipidemia promotes endothelial activation via a caspase-1-sirtuin 1 pathway. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Xi, H., Y. Zhang, Y. Xu, W.Y. Yang, X. Jiang, X. Sha, X. Cheng, J. Wang, X. Qin, J. Yu, Y. Ji, X. Yang, and H. Wang. 2016. Caspase-1 inflammasome activation mediates homocysteine-induced pyrop-apoptosis in endothelial cells. Circulation Research 118: 1525–1539.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Y., X. Li, A.L. Pitzer, Y. Chen, L. Wang, and P.L. Li. 2015. Coronary endothelial dysfunction induced by nucleotide oligomerization domain-like receptor protein with pyrin domain containing 3 inflammasome activation during hypercholesterolemia: beyond inflammation. Antioxidants & Redox Signaling 22: 1084–1096.

    CAS  Google Scholar 

  13. Sadeghi, H., A. Lockmann, A.C. Hund, U.K. Samavedam, E. Pipi, K. Vafia, et al. 2015. Caspase-1-independent IL-1 release mediates blister formation in autoantibody-induced tissue injury through modulation of endothelial adhesion molecules. Journal of Immunology 194: 3656–3663.

    CAS  Google Scholar 

  14. Wang, L., Y. Chen, X. Li, Y. Zhang, E. Gulbins, and Y. Zhang. 2016. Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget 7: 73229–73241.

    PubMed  PubMed Central  Google Scholar 

  15. Back, M., A.J. Yurdagul, I. Tabas, K. Oorni, and P.T. Kovanen. 2019. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nature Reviews. Cardiology 16: 389–406.

    PubMed  PubMed Central  Google Scholar 

  16. Quarato, G., C.S. Guy, C.R. Grace, F. Llambi, A. Nourse, D.A. Rodriguez, R. Wakefield, S. Frase, T. Moldoveanu, and D.R. Green. 2016. Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis. Molecular Cell 61: 589–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dhuriya, Y.K., and D. Sharma. 2018. Necroptosis: a regulated inflammatory mode of cell death. Journal of Neuroinflammation 15: 199.

    PubMed  PubMed Central  Google Scholar 

  18. Xia, B., S. Fang, X. Chen, H. Hu, P. Chen, H. Wang, and Z. Gao. 2016. MLKL forms cation channels. Cell Research 26: 517–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Murphy, J.M., P.E. Czabotar, J.M. Hildebrand, I.S. Lucet, J.G. Zhang, S. Alvarez-Diaz, R. Lewis, N. Lalaoui, D. Metcalf, A.I. Webb, S.N. Young, L.N. Varghese, G.M. Tannahill, E.C. Hatchell, I.J. Majewski, T. Okamoto, R.C.J. Dobson, D.J. Hilton, J.J. Babon, N.A. Nicola, A. Strasser, J. Silke, and W.S. Alexander. 2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39: 443–453.

    CAS  PubMed  Google Scholar 

  20. Van Hoecke, L., S. Van Lint, K. Roose, A. Van Parys, P. Vandenabeele, J. Grooten, et al. 2018. Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nature Communications 9: 3417.

    PubMed  PubMed Central  Google Scholar 

  21. Zhang, S., M.B. Tang, H.Y. Luo, C.H. Shi, and Y.M. Xu. 2017. Necroptosis in neurodegenerative diseases: a potential therapeutic target. Cell Death & Disease 8: e2905.

    CAS  Google Scholar 

  22. Guo, F.X., Q. Wu, P. Li, L. Zheng, S. Ye, X.Y. Dai, C.M. Kang, J.B. Lu, B.M. Xu, Y.J. Xu, L. Xiao, Z.F. Lu, H.L. Bai, Y.W. Hu, and Q. Wang. 2019. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death and Differentiation 26: 1670–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Najafov, A., A.K. Mookhtiar, H.S. Luu, A. Ordureau, H. Pan, P.P. Amin, et al. 2019. TAM kinases promote necroptosis by regulating oligomerization of MLKL. Molecular Cell 75: 457–468.e4.

    CAS  PubMed  Google Scholar 

  24. Yuan, J., P. Amin, and D. Ofengeim. 2019. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nature Reviews. Neuroscience 20: 19–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, Q., X. Yu, M. Li, Y. Liu, Y. Han, X. Zhang, X.M. Li, X.X. Wu, J. Qin, J. Fang, and H. Zhang. 2019. MLKL attenuates colon inflammation and colitis-tumorigenesis via suppression of inflammatory responses. Cancer Letters 459: 100–111.

    CAS  PubMed  Google Scholar 

  26. Liu, W., B. Chen, Y. Wang, C. Meng, H. Huang, X.R. Huang, J. Qin, S.R. Mulay, H.J. Anders, A. Qiu, B. Yang, G.J. Freeman, H.J. Lu, H.Y. Lin, Z.H. Zheng, H.Y. Lan, Y. Huang, and Y. Xia. 2018. RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America 115: E1475–E1484.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Paramel, V.G., L. Folkersen, R.J. Strawbridge, B. Halvorsen, A. Yndestad, T. Ranheim, et al. 2016. NLRP3 inflammasome expression and activation in human atherosclerosis. Journal of the American Heart Association 5.

  28. Rayner, K.J. 2017. Cell death in the vessel wall: the good, the bad, the ugly. Arteriosclerosis, Thrombosis, and Vascular Biology 37: e75–e81.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, W., C. Chen, Z. Chen, L. Liu, J. Jiang, Z. Wu, et al. 2018. NLRP3: a novel mediator in cardiovascular disease. Journal of Immunology Research 2018: 5702103.

    PubMed  PubMed Central  Google Scholar 

  30. Lin, J., X. Shou, X. Mao, J. Dong, N. Mohabeer, K.K. Kushwaha, et al. 2013. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability? PLoS One 8: e62148.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Usui, F., K. Shirasuna, H. Kimura, K. Tatsumi, A. Kawashima, T. Karasawa, S. Hida, J. Sagara, S’. Taniguchi, and M. Takahashi. 2012. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochemical and Biophysical Research Communications 425: 162–168.

    CAS  PubMed  Google Scholar 

  32. Shi, X., W.L. Xie, W.W. Kong, D. Chen, and P. Qu. 2015. Expression of the NLRP3 inflammasome in carotid atherosclerosis. Journal of Stroke and Cerebrovascular Diseases 24: 2455–2466.

    PubMed  Google Scholar 

  33. Zhang, L., L. Lu, X. Zhong, Y. Yue, Y. Hong, Y. Li, and Y. Li. 2019. Metformin reduced NLRP3 inflammasome activity in Ox-LDL stimulated macrophages through adenosine monophosphate activated protein kinase and protein phosphatase 2A. European Journal of Pharmacology 852: 99–106.

    CAS  PubMed  Google Scholar 

  34. Schneider, K.S., C.J. Gross, R.F. Dreier, B.S. Saller, R. Mishra, O. Gorka, et al. 2017. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Reports 21: 3846–3859.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gage, J., M. Hasu, M. Thabet, and S.C. Whitman. 2012. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. The Canadian Journal of Cardiology 28: 222–229.

    CAS  PubMed  Google Scholar 

  36. Hendrikx, T., M.L. Jeurissen, P.J. van Gorp, M.J. Gijbels, S.M. Walenbergh, T. Houben, et al. 2015. Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in Ldlr(−/−) mice. The FEBS Journal 282: 2327–2338.

    CAS  PubMed  Google Scholar 

  37. Zheng, F., Z. Gong, S. Xing, and Q. Xing. 2014. Overexpression of caspase-1 in aorta of patients with coronary atherosclerosis. Heart, Lung & Circulation 23: 1070–1074.

    Google Scholar 

  38. Gong, Y.N., C. Guy, J.C. Crawford, and D.R. Green. 2017. Biological events and molecular signaling following MLKL activation during necroptosis. Cell Cycle 16: 1748–1760.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Karunakaran, D., M. Geoffrion, L. Wei, W. Gan, L. Richards, P. Shangari, E.M. DeKemp, R.A. Beanlands, L. Perisic, L. Maegdefessel, U. Hedin, S. Sad, L. Guo, F.D. Kolodgie, R. Virmani, T. Ruddy, and K.J. Rayner. 2016. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Science Advances 2: e1600224.

    PubMed  PubMed Central  Google Scholar 

  40. Szobi, A., E. Goncalvesova, Z.V. Varga, P. Leszek, M. Kusmierczyk, M. Hulman, et al. 2017. Analysis of necroptotic proteins in failing human hearts. Journal of Translational Medicine 15: 86.

    PubMed  PubMed Central  Google Scholar 

  41. Gutierrez, K.D., M.A. Davis, B.P. Daniels, T.M. Olsen, P. Ralli-Jain, S.W. Tait, et al. 2017. MLKL activation triggers NLRP3-mediated processing and release of IL-1beta independently of gasdermin-D. Journal of Immunology 198: 2156–2164.

    CAS  Google Scholar 

  42. Conos, S.A., K.W. Chen, D. De Nardo, H. Hara, L. Whitehead, G. Nunez, et al. 2017. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proceedings of the National Academy of Sciences of the United States of America 114: E961–E969.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Sciences Foundation of China (grant numbers 81871701 and 81772244), the Natural Science Fund of Guangdong (grant numbers 2020B1515020013, 2017A030313532 and 2017A030313535), and the Science and Technology Program of Guangzhou (grant number 201704020213).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Qian Wu and Xin He designed the study, performed most part of the experiments, analyzed and interpreted the data, and wrote the manuscript. Li-Mei Wu, Ru-Yi Zhang, and Li-Min Li performed part of the experimental procedures. Chang-Meng Wu, Yuan-Bin Lu, Bing Hu, Chao Shi, Zhi-Feng Lu, and Biao Yang contributed to data acquisition. Lei Zheng, Yan-Wei Hu, and Qian Wang provided financial support and guided the completion of the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yan-Wei Hu or Qian Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., He, X., Wu, LM. et al. MLKL Aggravates Ox-LDL-Induced Cell Pyroptosis via Activation of NLRP3 Inflammasome in Human Umbilical Vein Endothelial Cells. Inflammation 43, 2222–2231 (2020). https://doi.org/10.1007/s10753-020-01289-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01289-8

KEY WORDS

Navigation