Skip to main content
Log in

Nucleation Process in Metasilicate Melts

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

A model of nucleation in metasilicate melts, taking into account thermodynamic and kinetic factors of phase transformations, was developed on the basis of the notion of cybotaxic groups. The number of formed nuclei depends not only on the degree of supercooling of the melt but also on the temperature at which the melt is cast into a mold, in the course of which the kinetic factor is realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. V. I. Vereshchagin, L. Z. Reznitskii, E. P. Vasil’ev, and Yu. I. Alekseev, “Diopside rocks—raw materials for many purposes,” Steklo Keram., No. 1, 37 – 38 (1989); V. I. Vereshchagin, L. Z. Reznitskii, E. P. Vasil’ev, and Yu. I. Alekseev, “Diopside rocks — raw materials for many purposes,” Glass Ceram., 46(1), 32 – 33 (1989).

  2. A. M. Ignatova and V. I. Vereshchagin, “Evaluation of the suitability of igneous rocks of the Western Urals for stone casting technologies,” Novye Ogneupory, No. 9, 11 – 15 (2016).

    Google Scholar 

  3. A. V. Manankov, D. A. Bychkov, B. S. Strakhov, et al., Mineralogical- geochemical and experimental studies of the synthesis of petrositalls,” Mineralogiya, Geokhimiya, i Poleznye Iskopaemye Azii (TGU, Tomsk), No. 2, 190 – 198 (2013).

  4. A. V. Manankov, E. Ya. Goryukhin, and A. A. Loktyushin, Wollastonite, Pyroxene and Other Materials from Industrial Waste and Noncritical Natural Raw Materials [in Russian], Izd. TGU, Tomsk (2002).

  5. A. M. Ignatova and V. I. Vereshchagin, Natural and Technogenic Petrurgic Raw Materials of the Urals [in Russian], Garmoniya, Perm (2016).

    Google Scholar 

  6. P. G. Usov, E. P. Tsimbalyuk, V. A. Lotov, and V. I. Vereshchagin, “Glass-binder for corundum abrasive tools, Inventor’s Certificate 859408 MKI s 04 V,” Byull. Izobr. Polezn. Modeli, No. 32 (1981).

  7. N. M. Pavlushkin, P. D. Sarkisov, and V. S. Levina, “High-iron glasses based on thermal-power-plant slag,” in: Glassy Systems and Glasses Based on Them [in Russian], Khimiya, Moscow (1971), pp. 235 – 239.

  8. G. A. Sycheva, I. G. Polyakova, and T. G. Kostareva, “Volumetric crystal nucleation catalyzed by Cr2O3 in glasses based on blast-furnace slags,” Fiz. Khim. Stekla, 42(3), 334 – 343 (2016).

    Google Scholar 

  9. A. M. Ignatova and V. I. Vereshchagin, “Model of the structure of cast-stone material with enhanced wear resistance,” Materialovedenie, No. 5, 13 – 17 (2017).

    Google Scholar 

  10. A. V. Manankov and V. M. Vladimirov, “Thermodynamic model of the crystallization of sitalls with metasilicate composition: Mechanism and structure,” Steklo Keram., No. 6, 3 – 7 (2016); A. V. Manankov and V. M. Vladimirov, “Thermodynamic model of the crystallization of sitalls with metasilicate composition: Mechanism and structure,” Glass Ñeram., 73(5 – 6), 201 – 205 (2016).

  11. W. Eitel, Physical Chemistry of Silicates [in Russian], Izd. Inostr. Lit., Moscow (1962).

    Google Scholar 

  12. V. D. Kuznetsov, Crystals and Crystallization, Gostekhizdat, Moscow (1954).

    Google Scholar 

  13. R. F. Strickland-Constable, Kinetics and Mechanism of Crystallization [in Russian], Nedra, Leningrad (1971).

    Google Scholar 

  14. Ya. I. Frenkel, Kinetic Theory of Liquids [in Russian], Nauka, Leningrad (1975).

  15. D. Turnbull and D. Cohen, Crystallization Kinetics and Glass Formation, Modern Aspect of the Vitreous State [in Russian], London (1960), pp. 38 – 62.

  16. K. A. Jacson, “Current concepts in crystal growth from melt,” Progr. Solid State Chem., No. 4, 53 – 80 (1967).

    Article  Google Scholar 

  17. A. M. Kalinina, V. M. Fokin, and V. N. Filipovich, “Induction period of crystal nucleation in LiO ∙ 2SiO2 glass and its temperature dependence,” Fiz. Khim. Stekla, 3(2), 298 – 304 (1977).

    Google Scholar 

  18. A. M. Kalinina, V. M. Fokin, and V. N. Filipovich, “On a method of determining the parameters characterizing the nucleation of crystals in glasses,” Fiz. Khim. Stekla, 2(4), 123 – 129 (1976).

    Google Scholar 

  19. G. A. Sycheva, “Determination of the critical crystal nucleus in lithium and sodium silicate glasses,” Fiz. Khim. Stekla, 41(3), 405 – 410 (2015).

    Google Scholar 

  20. N. G. Ryabtsev, Materials of Quantum Electronics [in Russian], Sov. Radio, Moscow (1972).

    Google Scholar 

  21. D. S. Sanditov, S. Sh. Sangadiev, and M. V. Darmaev, “Glass-transition temperature and cooling rate of glass-forming melts,” Fiz. Tverd. Tela, 58(10), 2005 – 2007 (2016).

    Google Scholar 

  22. A. M. Korikov, Mathematical Methods and Design of Experiments [in Russian], TGU, Tomsk (1973).

    Google Scholar 

  23. E. Polak, Numerical Optimization Methods [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  24. V. G. Karmanov, Mathematical Programming [in Russian], Nauka, Moscow (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Vladimirov.

Additional information

Translated from Steklo i Keramika, No. 3, pp. 28 – 34, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vladimirov, V.M., Vereshchagin, V.I. & Ignatova, A.M. Nucleation Process in Metasilicate Melts. Glass Ceram 77, 103–108 (2020). https://doi.org/10.1007/s10717-020-00249-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00249-w

Key words

Navigation